Efficacy of intraoral antiseptics in SARS-CoV-2 infection control in dental clinics

Eficácia de antissépticos intraorais no controle da infecção por SARS-CoV-2 na clínica odontológica

Eficacia de los antisépticos intraorales en el control de la infección por SARS-CoV-2 en la clínica dental

ABSTRACT

Background and Objectives: In the context of the COVID-19 pandemic, in which the main route of transmission is through contact with contaminated saliva, routine dental procedures represent a potential risk of contagion for professionals and patients. To reduce the occurrence of cross-infection, ways of controlling oral microbial load are necessary, such as the use of preoperative mouthwashes. Thus, the aim of this literature review was to assess the potential efficacy of different intra-oral antiseptics in SARS-CoV-2 infection control in dental clinics. Content: This is a literature review, carried out in the LILACS, Cochrane Library, CAPES and MEDLINE databases, using the search terms “mouth rinse”, “dental care”, “COVID-19”, “cetylpyridinium chloride”, “povidone-iodine”, “chlorhexidine”, and “hydrogen peroxide”. Among the 46 potentially relevant articles, fourteen articles were selected, with full texts published in the last 5 years. These were analyzed and categorized according to the type of study (literature review, in vitro and in vivo studies). The antiseptics highlighted as most relevant in terms of antiviral efficacy were povidone-iodine, cetylpyridinium chloride, hydrogen peroxide and chlorhexidine. Conclusion: Little evidence has been found regarding the effectiveness of oral antiseptics against SARS-CoV-2. It is worth mentioning that some studies conducted with povidone-iodine and chlorhexidine show promising results in combating SARS-CoV-2 infection. However, conducting randomized clinical studies is extremely important to determine the effectiveness of these compounds in controlling COVID-19 in dental practice.

Keywords: Dental Assistance. Infection Control. SARS-CoV-2. COVID-19. Mouthwashes.

RESUMO

Justificativa e Objetivos: No contexto da pandemia de COVID-19, em que a principal rota de transmissão da
doença se dá pelo contato com saliva contaminada, procedimentos odontológicos de rotina representam um risco potencial de contágio para profissionais e pacientes. Para diminuir a ocorrência de infeção cruzada, são necessárias formas de controle da carga microbiana oral, como o uso de enxaguantes bucais pré-operatórios. Dessa forma, o objetivo desta revisão de literatura foi avaliar a potencial eficácia de diferentes antissépticos intraorais no controle de infeção por SARS-CoV-2 na clínica odontológica. **Conteúdo:** Trata-se de uma revisão da literatura, realizada nas bases de dados LILACS, Biblioteca Cochrane, CAPES e MEDLINE, através dos termos de busca “mouth rinse”, “dental care”, “COVID-19”, “cetylpiridinium chloride”, “povidone-iodine”, “chlorhexidine” e “hydrogen peroxide”. Entre os 46 artigos potencialmente relevantes, foram selecionados 14 artigos, com textos completos publicados, nos últimos 5 anos. Esses foram analisados e categorizados conforme o tipo de estudo (revisão de literatura, estudos in vitro e estudos in vivo). Os antissépticos destacados como mais relevantes em termos de eficácia antiviral foram povidona iodada, cloreto de cetilpiridínio, peróxido de hidrogênio e clorhexidina. **Conclusão:** Poucos evidências foram encontradas em relação à eficácia de antissépticos orais contra o SARS-CoV-2. Vale ressaltar que alguns estudos realizados com iodopovidona e clorhexidina demonstram resultados promissores no combate à infeção pelo SARS-CoV-2. Contudo, a realização de estudos clínicos randomizados é de extrema importância para determinar a eficácia desses compostos no controle da COVID-19 na prática odontológica.


---

**RESUMEN**

**Justificación y objetivos:** En el contexto de la pandemia de COVID-19, en la que la principal vía de transmisión de la enfermedad es a través del contacto con saliva contaminada, los procedimientos dentales representan un riesgo de contagio para profesionales y pacientes. Para reducir la infección cruzada, son necesarias formas de controlar la carga microbiana oral, como el uso de enjuagues bucales preoperatorios. Por lo tanto, el propósito de esta revisión de la literatura fue evaluar la efectividad de diferentes antissépticos intraorales para controlar la infección por SARS-CoV-2 en la clínica dental. **Contenido:** Esta es una revisión de la literatura, realizada en las bases de datos LILACS, Cochrane Library, CAPES y MEDLINE, utilizando los términos de búsqueda “mouth rinse”, “dental care”, “COVID-19”, “cetylpiridinium chloride”, “povidone-iodine”, “chlorhexidine” y “hydrogen peroxide”. Entre los 46 artículos potencialmente relevantes, se seleccionaron 14 artículos, con textos completos publicados en los últimos 5 años. Estos fueron analizados y categorizados según el tipo de estudio (revisión de la literatura, estudios in vitro y in vivo). Los antissépticos destacados como más relevantes en términos de eficacia antiviral fueron povidona yodada, cetilpiridinio cloro, peróxido de hidrógeno y clorhexidina. **Conclusión:** Se encontró poca evidencia con respecto a la efectividad de los antissépticos orales contra el SARS-CoV-2. Vale la pena mencionar que algunos estudios realizados con povidona yodada y clorhexidina muestran resultados promissores contra el SARS-CoV-2. Sin embargo, realizar estudios clínicos aleatorios es importante para determinar la efectividad de estos compuestos en el control de COVID-19 en la práctica dental.

**Palabras clave:** Cuidado Dental. Control de Infecciones. SARS-CoV-2. COVID-19. Antisépticos Orales.

---

**INTRODUCTION**

The first cases of infection by the new human coronavirus (SARS-CoV-2) were registered in December 2019 in the city of Wuhan, China. The virus belongs to the family *Coronaviridae*, the same as the etiological agents of Severe Acute Respiratory Syndrome (SARS-CoV) and the Middle East Respiratory Syndrome (MERS-CoV). COVID-19, a frequently asymptomatic but potentially lethal disease, has spread throughout the world. Given its vertiginous spread, the World Organization of Health (WHO) declared COVID-19 a global pandemic on March 11, 2020. SARS-CoV-2 has a positive and unique RNA strand as its genome. It is a virus whose lipid envelope composition has not yet been determined experimentally, but it is known to be similar to influenza and herpes simplex viruses, containing phosphorylcholine, cholesterol, sphingolipids and “spike” glycoproteins. The latter are essential for the binding of the micro-organism with the host cells, contributing to its high degree of infectivity.

Although its incubation period is estimated to be long, between 2 to 14 days, any infected individual can transmit the disease, even before the onset of symptoms. This is because, in the first 10 days after infection, it still in the asymptomatic phase, the virus accumulates in the nasal and oropharyngeal mucosa, in addition to the salivary glands, in whose cells there is a high expression of the transmembrane protein angiotensin-converting enzyme 2 (ACE2), the main receptor of SARS-CoV-2 in the cells. It is inferred, furthermore, that its expression in the salivary glands is greater than in the lungs, which suggests that these sites are reservoirs for the virus before they infect other organs such as lungs, kidneys, and heart.

This factor gives saliva a high viral load, which can reach $1.2 \times 10^9$/ml of infectious copies, which makes it play a crucial role in the disease transmission route. In this regard, the current pandemic resulted in many implications for dental practice, since professionals need to be in constant contact with patients’ oral fluids, including saliva and even blood. Moreover, some dental procedures that require the use of water jets, ultrasonic scalpings and low and high-speed handpieces release small saliva particles ($\leq 5 \mu m$), also known as aerosols, in-
to the medium, which can transport SARS-CoV-2 as well as other pathogens. In general, aerosols have delayed stabilization, which causes them to remain suspended in the air for a period of up to 4 hours after the procedures, in addition to possibility of being transported over distances greater than one meter and eighty. In fact, to mitigate cross-infection resulting from contact with contaminated aerosols, it is possible to reduce their production, with the replacement of motorized instruments by manuals or reducing the salivary microbial load through the use of preoperative oral antiseptics. However, in certain cases, high-speedengines and water jets are essential for carrying out the procedures. Therefore, the use of antiseptics is essential to reduce the risk of disease transmission in dental clinics.

One of the most used oral antiseptics in dentistry is chlorhexidine gluconate (0.12%), due to its low toxicity and inhibition of oral biofilm development. However, the National Health Commission of China, through the Diagnosis Directive and Treatment of new Coronavirus Pneumonia, recommended the replacement of the compound by other antiseptics, as previous studies in the United States and England showed that its virucidal potential is limited and little known. Thus, many researchers have sought to assess the effectiveness and mechanism of action of other antiseptics that can help control the disease, such as povidone iodine (PVP-I), cetylpyridinium chloride (CPC) and hydrogen peroxide (H₂O₂), compounds that are already present in the chemical composition of many commercially available mouthwashes.

The Brazilian National Health Regulatory Agency (Anvisa - Agência Nacional de Vigilância Sanitária), as well as the Federal Council of Dentistry (CFO - Conselho Federal de Odontologia), have recommended mouthwashes with PVP-I (0.2%) or H₂O₂ (0.5% to 1.5%) before the procedures as a complement to the traditional protocol of oral rinses with chlorhexidine (CHX). On the other hand, the Brazilian Association of Dental Education (ABENO - Associação Brasileira Ensino Odontológico) maintains the use of CHX as the main antiseptic and only indicates PVP-I (0.2%) and CPC in a titration of 1:4,000 in cases of allergic sensitivity. It is noteworthy that such recommendations are made based on the mechanism of action of these antiseptics, since their effectiveness against the new coronavirus is still has not been clinically proven.

Therefore, the present literature review aimed to assess the potential efficacy of different intraoral antiseptics in SARS-CoV-2 infection control in dental clinics.

**METHODS**

This study is a descriptive and qualitative literature review. The literature review text was structured according to the PRISMA items (Main Items for Reporting Systematic Reviews and Meta-analyses), checklist and flowchart for systematic reviews.

**Eligibility criteria**

Articles with publication date referring to the last five years, which had their full texts published in English and which addressed the efficacy of intraoral antiseptics in SARS-CoV-2 infection control in dental clinics were considered for this review.

**Exclusion criteria**

Editorials and studies that were based on the authors’ perspectives and that did not address the scientific knowledge regarding the efficacy of intraoral antiseptics in SARS-CoV-2 infection control in dental clinics were excluded.

**Information source and search strategy**

The databases used in this review included the Latin American and Caribbean Literature on Health Sciences (LILACS), the Cochrane Library, the CAPES Journal Portal, in addition to the Online System for Search and Analysis of Medical Literature (MEDLINE). The following search terms were used “mouth rinse”, “dental care”, “COVID-19”, associated by the Boolean operator AND, and “cetylpyridinium chloride”, “povidone-iodine”, “chlorhexidine” and “hydrogen peroxide”, these, in turn, are associated by the OR operator. A bibliographic search was carried out from June 30 to July 7, 2020.

**Selection of studies**

In phase 1, three reviewers (F.A.S.M., G.O.J. and A.V.R.F.) selected the articles independently. Disagreements were discussed and sorted out with a fourth reviewer (E.A.A.). Duplicate articles, which were in different databases, were excluded from the review. Articles that appeared to meet the inclusion criteria, as well as articles that lacked information in their abstracts, were selected for full reading in phase 2, in order to determine the work eligibility. A supplementary article was included after checking the reference lists. Data extraction and assessment of the quality of evidence were performed using the GRADE method (Grading of Recommendations Assessment, Developing and Evaluation) in studies that met the inclusion criteria.

**Data collection**

Three reviewers (F.A.S.M., G.O.J. and A.V.R.F.) independently collected all data. The differences were discussed with a fourth reviewer (E.A.A.). Data were extracted and organized into tables. The following variables were verified: country and place of study, n sample, study design, antiseptic used (including concentration and duration of treatment), antiviral potential against SARS-CoV-2, and authors’ conclusions.

Data were expressed as antimicrobial potential of the antiseptic (family Coronaviridae and other viruses) for the literature reviews included in the study. For in vitro and in vivo studies, the antiviral potential of the antiseptic against SARS-CoV-2 was analyzed.

**Risk of bias in individual studies**

The reviewers (F.A.S.M., G.O.J. and A.V.R.F.) performed an analysis of the articles independently and any...
disagreement was sorted out by consulting a fourth reviewer (E.A.A.). The GRADE method (Grading of Recommendations Assessment, Developing and Evaluation) was used to assess the quality of evidence in literature reviews and in vitro and in vivo studies regarding the antiviral activity of antiseptics against SARS-CoV-2. The quality of evidence was checked based on risk of bias, inconsistency, indirect evidence, and inaccuracy.

RESULTS AND DISCUSSION

Selection of studies
In the first stage of the article selection process, 46 potentially relevant articles were selected from the Latin American and Caribbean Literature in Health Sciences (LILACS) electronic, Cochrane Library, CAPES Journal Portal, in addition to the System Online Search and Analysis of Medical Literature (MEDLINE) databases. After reviewing titles and abstracts, 19 articles were excluded as they were in different databases. The abstracts of the remaining 27 articles were read; however, 7 articles were excluded because they were not related to the review topic. Among the 20 selected articles, 7 did not meet the inclusion criteria of this review and were excluded. Thirteen articles were included and 1 complementary article selected after checking the reference lists, totaling 14 articles (Figure 1).

Studies included
The characteristics of studies included in this review are shown in Tables 1, 2 and 3. These were subdivided into three categories: literature reviews (Table 1), in vitro experimental studies (Table 2), and in vivo experimental studies (Table 3).

After analyzing the articles, it was possible to identify four most relevant antiseptics in oral viral load control: CHX, PVP-I, CPC, and $\text{H}_2\text{O}_2$.

Chlorhexidine (CHX)
One of the most common antiseptics in dental clinics, CHX has been recommended for medicinal use since the 1950s, being frequently used to control dental biofilm and treat gingivitis.\textsuperscript{17,30} In low concentrations (0.12%), it has bacteriostatic effect; in higher concentrations (2%), it has bactericidal effect.\textsuperscript{30} Its mechanism of action involves the lysis of the bacterial cell wall, which usually occurs after thirty seconds of application.\textsuperscript{4,17} It has its proven efficacy against gram-positive and gram-negative bacteria, aerobics and anaerobics.\textsuperscript{2}

However, its virucidal effects are controversial according to the analysis of the results obtained (Tables 1 and 3). Among the nine literature reviews selected, five addressed CHX characteristics.\textsuperscript{2,5,12,13,17} In general, all articles reported its efficacy against lipophilic or enveloped viruses, but not against non-enveloped ones. Experimental studies proving the inactivation of coronavirus species are still scarce.\textsuperscript{2} However, two more recent articles reported that coronavirus species showed sensitivity when subjected to the application of CHX solution combined with other compounds, such as ethanol (70%) and cetrimide on inanimate surfaces (Table 1).\textsuperscript{5,10}

Regarding the elimination of microorganisms present in aerosols, CHX was potentially less effective than PVP-I, having similar efficacy to CPC.\textsuperscript{12,17} However, an in vivo study carried out with two patients affected by COVID-19, who were given mouthwash for 30s with 15 mL of 0.12% CHX gluconate, showed that the viral load of SARS-CoV-2 in saliva significantly decreased and main-
studies on inanimate surfaces showed that coronavirus species were present on inanimate surfaces and could be transmitted through aerosolized particles. Revista De Epidemiologia E Controle De Infecção, 11(2). https://doi.org/10.17058/reci.v11i2.15492

Please cite this article as:
Francisca Aline da Silva Matias, Gildenilson Oliveira Júnior, Amanda Vaz Rodrigues Fontinelle, Érika de Araújo Abichacra.

EFFICACY OF INTRAORAL ANTISEPTICS IN SARS-COV-2 INFECTION CONTROL IN DENTAL CLINICS
Source: The authors (2021).

Table 1. Selected literature reviews according to authorship, analyzed antiseptics and antimicrobial potential, n=9.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Country</th>
<th>Analyzed antiseptics</th>
<th>Results: Antimicrobial Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herrera et al.; 2020 &amp; Lamas et al.; 2020 &amp; Yoon et al.; 2020 &amp; Authors</td>
<td>Germany</td>
<td>CHX, PVP-I, CPC, and H₂O₂</td>
<td>CHX: Rapid inactivation of lipophilic viruses. PVP-I: Effective against enveloped and non-enveloped viruses. CPC: Effective against enveloped influenza viruses such as H1N1 and MERS-CoV. H₂O₂: Recommended use for its oxidizing activity, no evidence against SARS-CoV-2.</td>
</tr>
<tr>
<td>O’Donnel et al.; 2020 &amp; Authors</td>
<td>United Kingdom</td>
<td>CHX, PVP-I, and H₂O₂</td>
<td>CHX: Effective against enveloped viruses. A combination of CHX and ethanol is recommended to reduce the viral load of coronavirus species. 0.23% PVP-I showed similar efficacy against SARS-CoV to that of ethanol (70%). H₂O₂: Disruption of lipid membranes by the release of oxygen free radicals. Little damage is reported within the range of 1 to 3%, concentrations used for tooth whitening.</td>
</tr>
<tr>
<td>Maria et al.; 2019 &amp; Ge et al.; 2020</td>
<td>Brazil</td>
<td>CHX and CPC</td>
<td>CHX and CPC: No significant differences between them in the elimination of microorganisms from saliva aerosols.</td>
</tr>
<tr>
<td>Parhar et al.; 2020 &amp; Kanagalingam-gam et al.; 2015 &amp; Frank et al.; 2020 &amp; Baker et al.; 2020 &amp; Caruso et al.; 2020</td>
<td>USA</td>
<td>CHX and PVP-I</td>
<td>CHX: In vitro studies on inanimate surfaces showed that coronavirus species were sensitive to CHX in combination with ethanol or cetrimide. Povidone iodine (0.23%): 99.99% reduction of influenza A viruses, SARS-CoV-1 and MERS-CoV.</td>
</tr>
<tr>
<td></td>
<td>Singapore</td>
<td>PVP-I</td>
<td>Virucidal activity greater than CHX. Potential antiseptic for SARS-CoV control.</td>
</tr>
<tr>
<td></td>
<td>USA</td>
<td>PVP-I</td>
<td>Virucidal antiseptic fast-acting, effective against SARS-CoV and MERS-CoV.</td>
</tr>
<tr>
<td></td>
<td>USA</td>
<td>CPC</td>
<td>CPC has a similar mechanism of action to some drugs that are effective against SARS-CoV-2.</td>
</tr>
<tr>
<td></td>
<td>Italy</td>
<td>H₂O₂</td>
<td>H₂O₂ nose/mouth/throat rinsing can improve local innate responses to viral infections and help protect against the new coronavirus (SARS-CoV-2).</td>
</tr>
</tbody>
</table>

Source: The authors (2021).

Table 2. In vitro studies selected according to authorship, analyzed antiseptics, characterization of samples and antiviral potential against SARS-CoV-2, n=2.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Country</th>
<th>Analyzed antiseptics</th>
<th>Methodology</th>
<th>Results: Antiviral potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bidra et al 2020 &amp; Authors</td>
<td>USA</td>
<td>PVP-I (0.5%, 1.25%, 1.5%) and H₂O₂ (1.5%, 3.0%)</td>
<td>Antiseptic and virus solutions were incubated at room temperature (22ºC) for 15 and 30s. Negative control (water).</td>
<td>PVP-I at the 3 concentrations completely inactivated the SARS-CoV-2 present in the samples in the time periods of 15s and 30s. H₂O₂ at concentrations of 1.5% and 3.0%, showed minimal antiviral activity after 30s.</td>
</tr>
<tr>
<td>Bidra et al 2020 &amp; Authors</td>
<td>USA</td>
<td>PVP-I (0.5%, 1%, 1.5%) and ethanol (70%)</td>
<td>Antiseptic and virus solutions were incubated at room temperature (22ºC) for 15 and 30s. Negative control (water).</td>
<td>PVP-I at the 3 concentrations showed similar virucidal potential over the same period of time (15s), with complete virus inactivation. Cytotoxicity was not observed. Ethanol (70%) took twice as long as PVP-I to completely inactivate the virus (30s).</td>
</tr>
</tbody>
</table>

Source: The authors (2021).

Table 3. In vitro studies selected according to authorship, analyzed antiseptics, sample characterization and antiviral potential against SARS-CoV-2, n=3.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Country</th>
<th>N Samples</th>
<th>Antiseptics</th>
<th>Methodology</th>
<th>Results: Antiviral potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoon et al.; 2020 &amp; Authors</td>
<td>South Korea</td>
<td>2 hospital patients with COVID-19</td>
<td>CHX (0.12%), 15mL, 30s</td>
<td>Saliva samples were collected 1h, 2h and 4h after rinsing with CHX.</td>
<td>The viral load in saliva decreased significantly and remained stable for 2 hours.</td>
</tr>
<tr>
<td>Lamas et al.; 2020 &amp; Authors</td>
<td>Spain</td>
<td>4 hospital patients with COVID-19</td>
<td>PVP-I (1%), 15mL, 1min</td>
<td>Saliva samples were collected 5min, 1h, 2h and 4h after PVP-I mouthwash.</td>
<td>In all samples, SARS-CoV-2 was present. Most showed a decrease only after 1 hour of application.</td>
</tr>
<tr>
<td>Khan et al.; 2020 &amp; Authors</td>
<td>India</td>
<td>315 patients with COVID-19</td>
<td>PVP-I (0.5%), 30s</td>
<td>Patients gargled with PVP-I for 30s before the test.</td>
<td>Antiviral potential has not been ana-lyzed. Completely inactivate the virus (30s).</td>
</tr>
</tbody>
</table>

Source: The authors (2021).
The action of CPC against coronaviruses was experienced by releasing cations that act by blocking viral activity by inhibiting hemagglutinin and neuraminidases proteins, thus preventing the binding of the virus to cell receptors as well as the release of the viral particle and consequent infection of new cells.

The results showed that five review articles indicated the potential efficacy of PVP-I against coronavirus species (Table 1), given that it is characterized by having a larger viral spectrum than CHX, acting against enveloped or non-enveloped viruses. Furthermore, three in vitro studies demonstrated the inactivation of SARS-CoV and MERS-CoV by the antiseptic. Although allergic reactions have been pointed out by some studies, other studies did not find them in the literature evidence of mucosal toxicity or irritation, even with prolonged use (Table 1).

Regarding SARS-CoV-2, the two in vitro studies already carried out applied different concentrations of PVP-I to virus samples grown in cell media (Table 2). Antiseptic and virus solutions were incubated at room temperature (22ºC) for 15 and 30s. Thus, it was observed that PVP-I was able to completely inactivate the virus after 15 seconds of application, at concentrations of 0.5%, 1%, 1.25% and 1.5%, with no cytotoxicity being observed.

On the other hand, only one of the two selected in vivo studies assessed the virucidal potential of PVP-I (1%) against SARS-CoV-2 (Table 3). This did not demonstrate a significant antiseptic efficacy against the new coronavirus, since a considerable reduction in viral activity in saliva only occurred in 75% of patients assessed and only 1 h after its application (Table 3). There were no reports of allergic reactions after rinsing with PVP-I in 0.5% and 1% titrations.

Cetylpyridinium chloride (CPC)

CPC is a quaternary ammonium cation, soluble in water and highly cationic at neutral pH. It belongs to the group of surface-active agents and is often found in oral antiseptics and disinfectants. Furthermore, it is important in dentistry for its antibacterial, antiplaque and antigenivitis properties.

The virucidal effect of CPC occurs mainly against enveloped viruses by releasing cations that act by breaking the lipid envelope, thus preventing cell infection. Its spectrum of action includes influenza virus strains (H1N1, A/H3N2, A, B and A resistant to oseltamivir), respiratory syncytial virus, parainfluenza and HIV (Table 2).

Hydrogen peroxide (H₂O₂)

Widely used in concentrations at 1 to 3% as a tooth whitening agent, H₂O₂ causes disruption of lipid membranes by releasing oxygen free radicals, making it very effective against enveloped viruses.

Although higher concentrations (> 5%) can induce damage to soft and hard tissues of the body, little damage is reported within the concentration range used in dental clinics. In addition to this, its inactivation in the oral mucosa is rapid due to the presence of catalase enzyme, physiologically produced by the body and by bacteria of the oral microbiota, which reduces its possibility of causing allergic reactions.

Some studies discussed the virucidal potential of H₂O₂, including three literature reviews and one in vitro study (Tables 1 and 2). Some authors recommended its use due to antioxidant properties. However, Caruso et al. (2020) highlighted that mouth and nasal rinses with antiseptic can improve the local innate response to viral infections due to oxidative stress caused by it (Table 1).

Regarding efficacy against SARS-CoV-2, Bidra et al. 2020 assessed the virucidal effect of H₂O₂ at two concentrations (1.5% and 3%), verifying a minimal reduction in viral titer after 30s of interaction of H₂O₂ with the virus (Table 2). Thus, H₂O₂ was less effective than PVP-I used in the study, since PVP-I at concentrations of 0.5%, 1.25% and 1.5% completely inactivated SARS-CoV-2 after 15s of interaction.

Assessment of the quality of evidence (GRADE)

Table 4 shows the assessment of the quality of evidence performed by the GRADE method. Literature reviews showed moderate quality of evidence due to the risk of bias in some selected articles. Although many articles discuss the relevance of antiseptic activity against viruses related to SARS-CoV-2 such as SARS-CoV and MERS-CoV, some studies do not present results in randomized clinical trials, with a significant number of patients. The absence of these data compromises the quality of evidence and can hinder decision-making related to the use of these antiseptics in dentists’ practice.

Furthermore, the in vivo studies analyzed showed very low quality of evidence, presenting methodological limitations and inconsistency of results (Table 4). The very low quality of evidence is associated with a reduced number of subjects in the studies. Differences in the results presented by patients and the lack of testing to confirm the suggested results. Although the pandemic was a major factor for the development of research around the world, it is extremely important that other studies with a lower risk of bias are carried out to determine the real effectiveness of these intraoral antiseptics in COVID-19 control in dental clinics.

On the other hand, in vitro studies showed high quality of evidence, demonstrating the antiviral activity of PVP-I against SARS-CoV-2.8–10 These data are promising and may contribute to future randomized clinical trials capable of investigating the action of PVP-I in preventing SARS-CoV-2 contamination.

CONCLUSION

Routine dental procedures constantly release saliva aerosols containing pathogens into the medium, potentially increasing the risk of cross-infection. Therefore, considering that the main route of transmission of SARS-CoV-2 through contact with contaminated saliva, the use of preoperative oral antiseptics in dental clinics is essential to control transmission, as they can considerably decrease the salivary viral load.

Little conclusive evidence has been found regarding the efficacy of different oral antiseptics against SARS-CoV-2. However, PVP-I and CHX showed promising results in SARS-CoV-2 infection control in some studies. However, it is necessary to carry out randomized clinical studies to prove the real effectiveness of these antiseptics in combating SARS-CoV-2 infections.

ACKNOWLEDGMENTS

We would like to thank the Universidade Federal do Piauí for the financial support.

REFERENCES


Table 4. Assessment of the quality of evidence of the results found for efficacy of intraoral antiseptics in SARS-CoV-2 infection control in dental clinics.

<table>
<thead>
<tr>
<th>No. of studies</th>
<th>Design</th>
<th>Methodological limitations (Risk of bias)</th>
<th>Quality assessment</th>
<th>Effect</th>
<th>Relative Risk (95%CI)*</th>
<th>Quality (grade)</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Literature review</td>
<td>Serious</td>
<td>No serious inconsistency</td>
<td>No serious indirect evidence</td>
<td>No serious inaccuracy</td>
<td>None</td>
<td>&lt; 0.67 log10</td>
</tr>
<tr>
<td>2</td>
<td>In vitro studies</td>
<td>No serious limitations</td>
<td>No serious inconsistency</td>
<td>No serious indirect evidence</td>
<td>No serious inaccuracy</td>
<td>None</td>
<td>IDCC &lt; 0.1 mL</td>
</tr>
<tr>
<td>3</td>
<td>In vivo studies</td>
<td>Serious</td>
<td>No important indirect evidence</td>
<td>Serious</td>
<td>None</td>
<td>VL &lt; after 2 h, VL &lt; in two patients</td>
<td>Very low</td>
</tr>
</tbody>
</table>


AUTHORS’ CONTRIBUTION

Francisca Aline da Silva Matias, Gildendison Oliveira Júnior, Amanda Vaz Rodrigues Fontinelle, Érika de Araújo Abi-chacra.