Índice relativo de qualidade de vida brasileiro: uma alternativa ao índice de desenvolvimento humano

Elaine Aparecida Fernandes
Rubicleis Gomes da Silva
Antônio José Medina dos Santos Baptista

RESUMO

A qualidade de vida da população é de suma importância para o desenvolvimento de um país. A aferição da magnitude dessa variável por meio da criação de um índice relativo de qualidade de vida (IRQV), que agregue em si uma multiplicidade de indicadores, aumenta o grau de confiabilidade, bem como permite um maior número de discussões acerca do nível de vida alcançado por uma sociedade. Nesse sentido, esta pesquisa busca criar um índice de qualidade de vida para a população brasileira. Os resultados indicam que as regiões Sul e Sudeste apresentaram os melhores índices, quando comparadas às demais regiões; os Estados que se destacam, nesse caso, são os de Minas Gerais, Santa Catarina e Rio Grande do Sul, que obtiveram valores para o IRQV acima de 80%. De forma contrária, os piores lugares para se viver estão nas regiões Norte e Nordeste, tendo os Estados de Alagoas e Maranhão, na região Nordeste, apresentado valores de IRQV inferiores a 10%.

Palavras-chave: índice relativo de qualidade de vida, análise estatística multivariada, Estados brasileiros.

ABSTRACT

A BRAZILIAN RELATIVE INDEX OF LIFE QUALITY: AN ALTERNATIVE TO THE HUMAN DEVELOPMENT INDEX - The quality of life of the population is an important
Índice relativo de qualidade de vida brasileiro

theme in the assessment of the development of a country. To gauge the magnitude of this variable this paper created a relative index of life quality (RILQ) that incorporates the multiplicity of indicators of standard of living reached by a society. This research aims at creating an index of life quality for the Brazilian regions. The results indicate that the South and Southeast regions present the best indexes, when compared to other regions. States of Distrito Federal, São Paulo, Minas Gerais, Santa Catarina and Rio Grande do Sul have obtained values of RILQ above 80%. The worst places to live in are the North and Northeast regions, where the States of Alagoas and Maranhão present values of RILQ inferior to 10%.

Keywords: Relative index of life quality, Multivariate Statistical Analysis, Brazilian states.

I Introdução

A Organização das Nações Unidas (ONU) utiliza o Índice de Desenvolvimento Humano (IDH) para mensurar o grau de desenvolvimento alcançado por um país, estado ou município, no sentido de possibilitar um diagnóstico sobre os indicadores utilizados (educação, longevidade e renda). O cômputo do IDH nos moldes adotados pela ONU, embora simples, falha em termos de abrangência, pelo fato de utilizar apenas indicadores de educação, longevidade e renda. Uma vez que o nível de desenvolvimento humano (qualidade de vida) de uma sociedade envolve uma multiplicidade de indicadores, apenas educação, longevidade e renda não captam com fidelidade o nível de desenvolvimento alcançado por uma sociedade, gerando resultados viesados. Assim, torna-se evidente o limitado alcance dos indicadores do IDH.

A importância da criação de um índice relativo de qualidade de vida (IRQV) que agregue em si uma multiplicidade de indicadores diminui substancialmente o viés existente na estimativa do IDH. Logo, os diagnósticos elaborados a partir do IRQV possuem maior grau de confiabilidade, bem como permitem maior número de regiões acerca do nível de vida alcançado por uma sociedade.

De forma geral, esta pesquisa busca criar um índice relativo de qualidade de vida para a população brasileira. Especificamente, pretende-se: a) determinar o IRQV para os Estados e regiões brasileiras; e b) determinar os impactos que os indicadores possuem sobre o IRQV.

O componente inovador desta pesquisa reside em dois aspectos. O primeiro compreende a criação de um índice que possui maior amplitude que o IDH; consequentemente, possui um grau de confiabilidade maior, em face de seu caráter mais abrangente. O segundo está relacionado aos impactos que os indicadores exercem sobre o IRQV.

A determinação dos impactos causados pelos indicadores sobre o IRQV gera informações importantes aos agentes públicos para a elaboração de políticas que visem aumentar a qualidade de vida. Com a determinação desses impactos, criam-se condições para os formuladores de políticas governamentais, em seus diversos níveis, de otimizar a alocação dos recursos, em face do conhecimento dos indicadores que possuem maior impacto sobre a qualidade de vida, tornando, assim, a ação governamental mais eficaz.

Este artigo contém, além desta introdução, mais três seções: na primeira, discutem-se os métodos utilizados no estudo; a seguir, os resultados são apresentados e algumas discussões são realizadas; e, finalmente, são apresentadas as principais conclusões obtidas da análise dos resultados.

2 Metodologia

Lavando-se em consideração que a qualidade de vida da população é de suma importância para o desenvolvimento de um país e dada a multidimensionalidade do conceito de "qualidade de vida", a aferição da magnitude dessa variável para os Estados e regiões brasileiras foi feita por meio da análise fatorial aplicada a um conjunto de indicadores de qualidade de vida. Essa técnica permitiu estimar índices totais e parciais de qualidade de vida, assim como identificar quais indicadores estão associados a seu maior ou menor grau.

O Índice Relativo de Qualidade de Vida (IRQV) é utilizado na análise da qualidade de vida dos Estados brasileiros. Para isso, a construção do IRQV é feita em duas etapas. Na primeira, desenvolve-se o Índice Parcial de Qualidade de Vida (IPQV), por meio de análise fatorial. Na segunda, com base no IPQV, são estimados os pesos atribuídos a cada uma das variáveis que entraram na composição do IRQV, utilizando-se a análise de regressão múltipla.

2.1 Índice Parcial de Qualidade de Vida (IPQV) e Índice Relativo de Qualidade de Vida (IRQV)

A construção dos índices parciais e relativos de qualidade de vida dos Estados brasileiros foi feita com base na análise fatorial via componentes principais. A análise fatorial é entendida como um conjunto de técnicas estatísticas que objetivam representar expressivo número de variáveis, de forma reduzida, como enfatizado por KIM e MUELLER (1978). O método pauta-se na determinação das relações quantitativas entre as variáveis, associando áquelas com padrão semelhante o efeito de um fator causal subjacente e específico.

O modelo de análise fatorial pode ser apresentado, genericamente, em forma matricial:

\[X = \mu + \alpha f + \varepsilon \quad (1) \]

em que \(X \) = \((X_1, X_2, \ldots, X_n) \) é um vetor transposto de variáveis aleatórias observáveis; \(f = (f_1, f_2, \ldots, f_k) \) é um vetor transposto \((k < p) \) de variáveis não-observáveis ou fatores; \(\alpha \) é uma matriz \((p \times r) \) de coeficientes fixos ou cargas fatoriais; e \(\varepsilon = (\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_p) \) é um vetor transposto de erros aleatórios.

A análise fatorial possui propriedades importantes. A primeira é que
e \(E(x) = E(f) = 0 \) e a segunda se refere aos fatores, que devem ser ortogonais. Nem sempre a estrutura inicial das estimativas das cargas fatoriais é definitiva. Com vistas a melhorar a interpretação dos fatores, o método proporciona a possibilidade de se fazer sua rotação. No presente caso, utilizou-se o método Varimax de rotação ortogonal dos fatores.

A estimação dos escores associados aos fatores obtidos, após a rotação ortogonal da estrutura fatorial inicial, situa cada observação no espaço dos fatores comuns. Logo, para cada fator, o i-ésimo escoré fatorial será extraiado é definido por \(F_i \) e expresso por:

\[
F_i = \sum_{j=1}^{p} b_{ij} X_j, \quad \text{com } j = 1, 2, ..., p. \tag{2}
\]

em que \(b_{ij} \) são os coeficientes de regressão e \(X_j \) as p variáveis observáveis.

Para estimar a variável \(F_i \), que não é observável, utiliza-se da técnica de análise fatorial por meio da matriz \(X \) de variáveis observáveis. A forma matricial a ser utilizada é a equação (2), devidamente reestruturada:

\[
F_{(maj)} = X_{(maj)} \cdot B_{(maj)} \tag{3}
\]

Os escores fatoriais são afetados pelas unidades em que as variáveis \(X_j \) são medidas, tornando-se conveniente trabalhar com variáveis normalizadas. Dessa forma, substitui-se a variável \(X_j \) pela variável normalizada \(Z_j \), expressa em desvios-padrão, isto é, os desvios das observações originais em relação à sua média:

\[
Z_j = (X_j - \mu_j) / \sigma_j \tag{3.a}
\]

em que \(\mu_j \) e \(\sigma_j \) são a média de \(X_j \) e \(\sigma_j \), o seu desvio-padrão.

A equação (3) é, então, modificada, sendo reescrita da seguinte forma:

\[
F_{(maj)} = Z_{(maj)} \cdot B_{(maj)} \tag{4}
\]

Como as variáveis estão normalizadas em ambos os lados da equação, o vetor dos coeficientes de regressão \(B \) é substituído pelo vetor \(b \). Multiplicando os dois lados da equação (4) por \((1/n)Z\), obtém-se:

\[
\frac{1}{n} Z' F = \frac{1}{n} Z' Z B, \tag{5}
\]

em que \(n \) é o número de observações e \(Z \), a matriz transposta de \(Z \).

O primeiro membro da equação (5), \((1/n)Z' F\), é a matriz de correlação entre os termos de \(X \), que, a partir de agora será representada por \(R \). Já a matriz \((1/n)Z' Z B\) representa a correlação existente entre os escores fatoriais e os próprios fatores e será identificada por \(L \). Assim, pode-se reescrever a equação (5) da seguinte forma:

\[
L = RB. \tag{6}
\]

Ao supor que a matriz \(R \) seja não-singular, em que \(R' R \leq 0 \), multiplicando ambos os lados de (6) por \((R' R)^{-1}\), que é a inversa de \(R \), tem-se:

\[
b = R^{-1} L. \tag{7}
\]

Após a estimação do vetor \(b \), pode-se substituí-lo na equação (4) para obter os escores fatoriais de cada observação.

A propriedade de ortogonalidade dos escores fatoriais estimados foi utilizada na elaboração do IPQV. Entretanto, deve-se observar que a ortogonalidade associada à matriz de fatores não implica, necessariamente, a ortogonalidade dos escores fatoriais, tendo-se testar se os escores fatoriais são ortogonais por meio da matriz de variância e covariância entre esses escores.

A equação usada para estimar o IPQV pode ser expressa da seguinte forma:

\[
IPQV_i = \left(\sum_{j=1}^{p} \frac{F_{ij}^2}{F_{ij}^{max}} \right)^{-1}, \quad \text{com } j = 1, 2, ..., p. \tag{8}
\]

em que \(IPQV \), é o índice parcial de qualidade de vida associado ao i-ésimo Estado brasileiro; \(F \) são os escores fatoriais estimados, conforme procedimento de componentes principais.

Espera-se que os escores associados aos Estados tenham distribuição simétrica em torno da média zero. Assim, metade deles apresentará sinais negativos e a outra metade, sinais positivos, de modo que os Estados com menores índices de qualidade de vida parcial apresentarão escores fatoriais negativos. A fim de evitar que altos escores fatoriais negativos elevem a magnitude dos índices associados a esses Estados, é conveniente inseri-los no primeiro quadrante, conforme transformação:

\[
F_{ij} = \frac{F_{ij} - F_{ij}^{min}}{F_{ij}^{max} - F_{ij}^{min}} \tag{9}
\]

em que \(F_{ij}^{min} \) e \(F_{ij}^{max} \) são os valores máximos e mínimos observados para o i-ésimo escoré fatorial associado ao i-ésimo Estado brasileiro.

Por meio desse procedimento, consegue-se alçar todos os escores fatoriais no intervalo fechado entre zero e um. O cálculo geométrico do índice parcial de qualidade de vida é mostrado na Figura 1.
Índice relativo de qualidade de vida brasileiro

Figura 1 - Construção geométrica do IPQV.

Na Figura 1, observa-se que associados ao Estado A estão os escores fatoriais F_{1a} e F_{2a}, em que o vetor R_a é o resultante associada a esses escores fatoriais ortogonais, assim definidos:

$$R_a = (F_{1a}^2 + F_{2a}^2)^{1/2}$$

(10)

Procedimento semelhante seria utilizado no Estado B. O tamanho da resultante R_a ou R_B determinará a magnitude do IPQV associado aos Estados A e B, respectivamente. Ressalte-se que o IPQV, definido dessa forma, é útil para fazer a hierarquização dos Estados brasileiros quanto ao nível de qualidade de vida; todavia, não serve para estimar o percentual de qualidade de vida de cada um dos Estados. Para isso, utiliza-se o IRQV.

Na construção do IRQV, associado ao i-ésimo Estado brasileiro, definiu-se a equação:

$$IRQV_i = 1 - \left(\frac{\sum_{j=1}^{n} P_j X_j}{P_i} \right)$$

(11)

em que os pesos P_j são estimados por regressão múltipla; a variável dependente é o IPQV; e as variáveis explicativas são os indicadores utilizados na construção do IRQV. O IRQV foi usado como variável dependente em uma regressão múltipla, em que os indicadores foram utilizados como variáveis explicativas.

2.2. Indicadores de qualidade de vida

Na construção do IRQV foram levados em consideração 13 indicadores, envolvendo um conhecimento a priori de quais seriam os níveis ideais de qualidade de vida associados aos indicadores.

No critério de hierarquização, tomou-se por base os cinco melhores Estados posicionados, em cada um dos indicadores empregados, para afetar a qualidade de vida. Em 2003, havia 27 Estados, dos quais foram consideradas as médias que serviram de base para estimação da média aritmética de cada indicador, cujos valores foram tomados como referência de qualidade de vida. Significa dizer que, quanto mais distante estiver o valor encontrado de um estado em relação à média estimada de determinado indicador, menor a sua qualidade de vida.

Levando-se em consideração o exposto, foram selecionados indicadores que contemplam: saúde, educação, renda, violência e saneamento básico. Com isso, tem-se uma abrangência bem ampla sobre a qualidade de vida nos Estados brasileiros. A seguir encontram-se os 13 indicadores utilizados na construção do IPQV e do IRQV.

IX_1 - número de habitantes por estabelecimentos de saúde em 2002;
IX_1w - média dos cinco melhores Estados posicionados em relação a IX_1;
IX_2 - número de empregos médicos por mil habitantes em 2002;
IX_2w - média dos cinco melhores Estados posicionados em relação a IX_2;
IX_3 - taxa de mortalidade infantil em 2000;
IX_3w - média dos cinco melhores Estados posicionados em relação a IX_3;
IX_4 - esperança de vida ao nascer em 2000;
IX_4w - média dos cinco melhores Estados posicionados em relação a IX_4;
IX_5 - taxa de alfabetização de adultos em 2000;
IX_5w - média dos cinco melhores Estados posicionados em relação a IX_5;
IX_6 - taxa bruta de frequência escolar em 2000;
IX_6w - média dos cinco melhores Estados posicionados em relação a IX_6;
IX_7 - renda per capita em 2000;
IX_7w - média dos cinco melhores Estados posicionados em relação a IX_7;
IX_8 - taxa de homicídios em 2000;
IX_8w - média dos cinco melhores Estados posicionados em relação a IX_8;
IX_9 - taxa de abastecimento d’água em 2002;
IX_9w - média dos cinco melhores Estados posicionados em relação a IX_9;
IX_{10} - percentagem de serviço de esgoto em 2002;
IX_{10w} - média dos cinco melhores Estados posicionados em relação a IX_{10};
IX_{11} - percentagem de serviço de coleta de lixo em 2002;
IX_{11w} - média dos cinco melhores Estados posicionados em relação a IX_{11};
IX_{12} - índice de Gini de concentração de renda em 2002;
IX_{12w} - média dos cinco melhores Estados posicionados em relação a IX_{12};
IX_{13} - percentagem do trabalho infantil em 2002;
IX_{13w} - média dos cinco melhores Estados posicionados em relação a IX_{13}.

Com base nos indicadores supracitados, passou-se a estruturar aqueles que entraram na construção do indicador e do índice, cujas definições são as que se seguem.

Para os indicadores que possuem relação positiva com o IPQV, representado por:

$$\frac{d\text{IPQV}}{d\text{IX}_j} > 0$$

(12)

têm-se:

Para determinar se os dados suportam uma análise fatorial, foram feitos alguns testes estatísticos. Esse é o caso do teste de esfericidade de Bartlett, cujo objetivo é constatar a presença de correlações entre as variáveis. Depois da realização do teste, que atingiu valor igual a 323,553, verificou-se a sua significância a 1% de probabilidade, resultado que permite rejeitar a hipótese nula de que a matriz de correlação seja uma matriz identidade.

Em seguida, utilizou-se a medida de adequação da amostra, a qual pode assumir valores de 0 a 1, atingindo a unidade quando cada variável for perfeitamente predita pelas demais. Na tentativa de medir essa adequabilidade, utilizou-se o teste de Kaiser-Meyer-Olkin (KMO), cujo valor obtido foi de 0,60. Conforme a classificação fornecida por Hair et al. (1995), valores acima de 0,5 indicam que os dados são adequados à realização da análise fatorial. Por meio dos testes, concluiu-se que as variáveis utilizadas estão de acordo com o procedimento da análise fatorial, o que possibilita a continuidade deste estudo.

O emprego do método de componentes principais gerou quatro fatores com raízes características maiores que um (Tabela 1).

Tabela 1 - Fatores extraídos pelo método dos componentes principais

<table>
<thead>
<tr>
<th>Fator</th>
<th>Raiz característica</th>
<th>Variância explicada pelo fator - %</th>
<th>Variância acumulada - %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6,14</td>
<td>47,23</td>
<td>47,23</td>
</tr>
<tr>
<td>2</td>
<td>2,03</td>
<td>15,62</td>
<td>62,85</td>
</tr>
<tr>
<td>3</td>
<td>1,29</td>
<td>9,96</td>
<td>72,81</td>
</tr>
<tr>
<td>4</td>
<td>1,04</td>
<td>8,04</td>
<td>80,85</td>
</tr>
</tbody>
</table>

Fonte: Resultados da pesquisa.

Observa-se que a contribuição acumulada dos quatro fatores, para explicar a variância total dos indicadores utilizados, é de 81%. Esses valores mostram que a utilização de quatro fatores é suficiente para a análise.

No sentido de facilitar a interpretação, os fatores foram submetidos a uma rotação ortogonal pelo método Varimax. Segundo Kim e Mueller (1978), essa rotação aterra a contribuição de cada fator para a variância, sem, contudo, modificar a contribuição conjunta destes. A principal vantagem da rotação é permitir que os novos fatores se relacionem, claramente, com determinados grupos de variáveis, facilitando a análise da solução encontrada. A Tabela 2 exibe as cargas fatoriais, as comunalidades e o percentual da variância total dos indicadores.

Com base nos resultados apresentados na Tabela 3, nota-se que a média do índice para o Brasil é de 49,25%. Este valor, junto com o desvio-padrão de 59%, indica que existe uma grande heterogeneidade entre os Estados quando se trata de qualidade de vida. Enquanto existem Estados com índice acima de 80%, que é o caso de Distrito Federal, Minas Gerais, Rio Grande do Sul, Santa Catarina e São Paulo, no extremo oposto existem outros, como Alagoas e Maranhão, cujos índices não atingiram 10%. Esses resultados mostram a disparidade existente entre os Estados e, consequentemente, entre as regiões, o que evidencia a má distribuição de renda e de condições sociais básicas no país.

Observa-se que a região Centro-Oeste é a que apresenta maior desigualdade em relação ao ÍQRV, visto que seu desvio-padrão representa 14,52% da média. Resultado semelhante é verificado na região Norte, onde o desvio representa 13,11% da média. Claramente, isso é um indicador da grande heterogeneidade regional em termos de qualidade de vida.

No sentido de facilitar a classificação dos Estados em se tratando do nível de qualidade de vida, optou-se pela utilização de cinco conceitos, os quais são representados pelas letras A, B, C, D e E, obedecendo-se ao seguinte critério: de 0% a 20% = "A"; de 21% a 40% = "B"; de 41% a 60% = "C"; de 61% a 80% = "D"; e de 81% a 100% = "E". Após essa classificação, tabularam-se os conceitos por Estado, conforme Tabela 4. Com isso, foi possível observar, de forma clara, uma grande heterogeneidade existente entre os Estados, em relação ao ÍQRV.

Por outro lado, os Estados das regiões Sul e Sudeste possuem predominância no conceito A, ou seja, que mostra que as duas regiões destacam-se no que se refere à qualidade de vida. Por outro lado, os Estados das regiões Norte e Nordeste tiveram seus valores concentrados nos conceitos B, C e D, com predominância do conceito B. O interior do Sudeste e o Sul destacam-se por apresentar maiores níveis do ÍQRV e maior homogeneidade, o que indica que a qualidade de vida, nessas duas regiões, é bastante superior em relação às demais. Por fim, a região Centro-Oeste encontra-se numa situação intermediária, apresentando um Estado no conceito A (Distrito Federal) e os restantes nos conceitos B e C.

Para fins de interpretação, as cargas fatoriais acima de 0,6 estão em negrito, com vistas a evidenciar os indicadores mais fortemente associados a determinado fator.

Na Tabela 2, pode-se constatar que o Fator 1 se encontra fortemente correlacionado com os indicadores INDX2 (número de empregos médicos por mil habitantes), INDX4 (mortalidade infantil), INDX4 (esperança de vida ao nascer), INDX5 (taxa de alfabetização de adultos), INDX7 (renda per capita); o Fator 2 está mais correlacionado com os indicadores INDX10 (% de serviço de esgoto), INDX11 (% de coleta de lixo), INDX12 (índice de Gini) e INDX13 (% de trabalho infantil); o Fator 3, com o fator INDX1 (número de habitantes por estabelecimento de saúde); e o Fator 4, com INDX6 (taxa bruta de frequência escolar) e INDX9 (taxa de abastecimento d'água).

Após a obtenção dos fatores e coeficientes (cargas fatoriais) necessários à estimação dos escores fatoriais, calcula-se o IPQV de cada Estado brasileiro. Estimado o IPQV e encontrados os pesos associados a cada um dos indicadores obtidos por meio de análise de regressão linear múltipla, em que o IPQV foi a variável dependente e os indicadores INDX1 a INDX13 as variáveis independentes, foram, então, estimados os respectivos ÍQRV.

Tabela 2 - Cargas fatoriais e comunalidades, após a rotação ortogonal pelo método Varimax

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Carga Fatorial</th>
<th>Comunalidades</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F1</td>
<td>F2</td>
</tr>
<tr>
<td>INDX1</td>
<td>0,123</td>
<td>0,061</td>
</tr>
<tr>
<td>INDX2</td>
<td>0,656</td>
<td>(0,191)</td>
</tr>
<tr>
<td>INDX3</td>
<td>0,878</td>
<td>0,326</td>
</tr>
<tr>
<td>INDX4</td>
<td>0,905</td>
<td>0,142</td>
</tr>
<tr>
<td>INDX5</td>
<td>0,893</td>
<td>0,302</td>
</tr>
<tr>
<td>INDX6</td>
<td>0,078</td>
<td>0,006</td>
</tr>
<tr>
<td>INDX7</td>
<td>0,925</td>
<td>0,079</td>
</tr>
<tr>
<td>INDX8</td>
<td>(0,267)</td>
<td>(0,366)</td>
</tr>
<tr>
<td>INDX9</td>
<td>0,457</td>
<td>0,250</td>
</tr>
<tr>
<td>INDX10</td>
<td>0,339</td>
<td>(0,669)</td>
</tr>
<tr>
<td>INDX11</td>
<td>0,583</td>
<td>0,676</td>
</tr>
<tr>
<td>INDX12</td>
<td>0,225</td>
<td>0,766</td>
</tr>
<tr>
<td>INDX13</td>
<td>0,446</td>
<td>0,701</td>
</tr>
</tbody>
</table>

% da Variança: 47,23 15,62 9,96 8,04 -

Fonte: Resultados da pesquisa.
Tabela 3 – Índice relativo de qualidade de vida por regiões e Estados brasileiros

<table>
<thead>
<tr>
<th>NORTE</th>
<th>IRQV %</th>
<th>NORDESTE</th>
<th>IRQV %</th>
<th>SUDESTE</th>
<th>IRQV %</th>
<th>SUL</th>
<th>IRQV %</th>
<th>CENTRO- OESTE</th>
<th>IRQV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rondônia</td>
<td>63,61</td>
<td>Maranhão</td>
<td>6,48</td>
<td>Minas Gerais</td>
<td>82,78</td>
<td>Paraná</td>
<td>73,80</td>
<td>Mato Grosso do Sul</td>
<td>69,37</td>
</tr>
<tr>
<td>Acre</td>
<td>55,05</td>
<td>Piauí</td>
<td>28,55</td>
<td>Espírito Santo</td>
<td>79,45</td>
<td>Santa Catarina</td>
<td>88,34</td>
<td>Mato Grosso</td>
<td>70,59</td>
</tr>
<tr>
<td>Amazonas</td>
<td>29,40</td>
<td>Ceará</td>
<td>23,48</td>
<td>Rio de Janeiro</td>
<td>78,71</td>
<td>Rio Grande do Sul</td>
<td>89,62</td>
<td>Goiás</td>
<td>63,23</td>
</tr>
<tr>
<td>Roraima</td>
<td>37,30</td>
<td>Rio Grande do Norte</td>
<td>21,05</td>
<td>São Paulo</td>
<td>81,49</td>
<td>Distrito Federal</td>
<td>96,04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pará</td>
<td>44,50</td>
<td>Parába</td>
<td>14,83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amapá</td>
<td>28,88</td>
<td>Pernambuco</td>
<td>21,18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tocantins</td>
<td>36,13</td>
<td>Sergipe</td>
<td>20,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bahia</td>
<td>25,77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MÁXIMO
- Nordeste: 28,55
- Médio: 16,51
- Mínimo: 0,00
- Desvio-Padrão: 10,10

MÁXIMO
- Mínimo: 82,78
- MÉDIO: 80,61
- MÁXIMO: 78,71
- Desvio-Padrão: 1,87

MÉDIO
- Rondônia: 63,61
- Amapá: 28,88
- Tocantins: 36,13
- Desvio-Padrão: 14,52

Fonte: Resultados da pesquisa.

Tabela 4 – Conceitos relativos ao IQV no Brasil em 2000/02

<table>
<thead>
<tr>
<th>NORTE</th>
<th>MÈDIO</th>
<th>SUDESTE</th>
<th>CENTRO-OESTE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fonte: Resultados da pesquisa.

Tabela 5 – Valores das elasticidades associadas ao IQV

<table>
<thead>
<tr>
<th>Elasticidade</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
<th>X6</th>
<th>X7</th>
<th>X8</th>
<th>X9</th>
<th>X10</th>
<th>X11</th>
<th>X12</th>
<th>X13</th>
<th>Valor esperado</th>
<th>Órdenção descrescente dos impactos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X1</td>
<td>X2</td>
<td>X3</td>
<td>X4</td>
<td>X5</td>
<td>X6</td>
<td>X7</td>
<td>X8</td>
<td>X9</td>
<td>X10</td>
<td>X11</td>
<td>X12</td>
<td>X13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0026</td>
<td>0,0076</td>
<td>0,0140</td>
<td>0,149</td>
<td>0,280</td>
<td>0,2816</td>
<td>0,3615</td>
<td>1.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabela 6 - Indicadores de qualidade de vida para os Estados brasileiros com relação aos cinco primeiros posicionados

<table>
<thead>
<tr>
<th>Estados</th>
<th>INDX2</th>
<th>Estados</th>
<th>INDX3</th>
<th>Estados</th>
<th>INDX4</th>
<th>Estados</th>
<th>INDX7</th>
<th>Estados</th>
<th>INDX5</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>-</td>
<td>21</td>
<td>-</td>
<td>21</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>-</td>
<td>24</td>
<td>0,08</td>
<td>24</td>
<td>-</td>
<td>25</td>
<td>16,04</td>
<td>21</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>3,00</td>
<td>23</td>
<td>2,14</td>
<td>25</td>
<td>-</td>
<td>19</td>
<td>20,90</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>4,66</td>
<td>25</td>
<td>2,71</td>
<td>7</td>
<td>1,55</td>
<td>21</td>
<td>21,95</td>
<td>25</td>
<td>1,97</td>
</tr>
<tr>
<td>8</td>
<td>12,66</td>
<td>7</td>
<td>5,57</td>
<td>13</td>
<td>2,75</td>
<td>21</td>
<td>24,74</td>
<td>19</td>
<td>2,66</td>
</tr>
</tbody>
</table>

Fonte: Resultados da pesquisa

Tabela 7 - Indicadores de qualidade de vida para os Estados brasileiros com relação aos cinco últimos posicionados

<table>
<thead>
<tr>
<th>Estados</th>
<th>INDX2</th>
<th>Estados</th>
<th>INDX3</th>
<th>Estados</th>
<th>INDX4</th>
<th>Estados</th>
<th>INDX7</th>
<th>Estados</th>
<th>INDX5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60,74</td>
<td>20</td>
<td>147,09</td>
<td>2</td>
<td>11,80</td>
<td>6</td>
<td>75,00</td>
<td>6</td>
<td>29,98</td>
</tr>
<tr>
<td>22</td>
<td>60,97</td>
<td>17</td>
<td>164,69</td>
<td>26</td>
<td>12,43</td>
<td>15</td>
<td>75,02</td>
<td>1</td>
<td>30,40</td>
</tr>
<tr>
<td>27</td>
<td>61,24</td>
<td>15</td>
<td>167,32</td>
<td>18</td>
<td>13,20</td>
<td>2</td>
<td>77,08</td>
<td>15</td>
<td>31,91</td>
</tr>
<tr>
<td>14</td>
<td>66,59</td>
<td>10</td>
<td>171,95</td>
<td>15</td>
<td>14,28</td>
<td>18</td>
<td>77,77</td>
<td>18</td>
<td>32,51</td>
</tr>
<tr>
<td>10</td>
<td>69,61</td>
<td>2</td>
<td>242,76</td>
<td>10</td>
<td>15,87</td>
<td>10</td>
<td>78,82</td>
<td>2</td>
<td>37,32</td>
</tr>
</tbody>
</table>

Fonte: Resultados da pesquisa
Diante dos resultados mencionados, pode-se inferir que medidas governamentais que enfatizem principalmente os cinco indicadores melhores colocados em termos de valores das elasticidades apresentados na Tabela 5 — quais sejam renda per capita, esperança de vida ao nascer e taxa de alfabetização de adultos — seriam mais efetivas para a melhoria da qualidade de vida da população brasileira.

4 Conclusão

Em geral, os resultados foram coerentes e de acordo com o que se esperava. Constatou-se que existem grandes heterogeneidades regionais em termos de qualidade de vida. Os resultados indicam que as regiões Sul e Sudeste apresentaram os melhores indicadores, quando comparadas às demais. Isso significa que essas oferecem melhores níveis de renda, esperança de vida, educação, etc. Os Estados que se destacam, nesse caso, são o de Minas Gerais, Santa Catarina e Rio Grande do Sul, que obtiveram valores para o IQV acima de 80%.

De forma contrária, os piores lugares para se viver, considerando a qualidade de vida, estão nas regiões Norte e Nordeste, que obtiveram valores baixíssimos de IQV, sendo os Estados de Alagoas e Maranhão, na região Nordeste, os de destaque em termos de resultados ruins, com valores de IQV inferiores a 10%. Entretanto, existem algumas exceções, como os Estados do Acre e Rondônia, na região Norte, com valores de IQV acima da média.

Por fim, as variáveis que mais impactam o IQV são renda per capita, esperança de vida e taxa de alfabetização de adultos, indicando que as políticas governamentais podem ser mais eficazes se priorizarem esses indicadores. Dada a grande relevância do tema analisado neste estudo, torna-se necessário atualizá-lo periodicamente, no sentido de analisar a dinâmica das disparidades regionais, ou seja, é necessário conhecer o comportamento da divergência ou convergência dos indicadores de qualidade de vida, a fim de oferecer subsídios aos formuladores de políticas públicas.

5 Referências

Fonte: Resultados da pesquisa.