O uso de métodos de aprendizado de máquina para classificação de imagens de tomografia computadorizada na pandemia da COVID-19: uma revisão

Autores

  • Jacek Sieredzinski 109 Military Hospital and Clinic, Piotra Skargi 9-11, 70-965 Szczecin, Poland
  • Daniel West Pomeranian University of Technology

DOI:

https://doi.org/10.17058/reci.v15i1.19227

Palavras-chave:

COVID-19, tomografia computadorizada, aprendizado de máquina, aprendizado profundo, redes neurais convolucionais

Resumo

Justificativa e Objetivos: A COVID-19 foi declarada uma pandemia pela Organização Mundial da Saúde, representando um grande desafio em todo o mundo. Um método de diagnóstico precoce da COVID-19 é baseado em tomografias computadorizadas, que podem ser analisadas usando inteligência artificial para economizar recursos médicos, logísticos e humanos. Portanto, o objetivo deste estudo foi apresentar o atual estado da arte na aplicação do aprendizado de máquina para classificar imagens de tomografia computadorizada na pandemia de COVID-19. Conteúdo: A revisão descreve brevemente os tipos de métodos de aprendizado de máquina para detecção de COVID-19, os estágios de construção do modelo de aprendizagem profunda (segmentação, aumento) e aspectos selecionados da inteligência artificial explicável. Finalmente, os resultados da aplicação são discutidos e os indicadores de desempenho mais comuns para modelos individuais são dados. Conclusão: Modelos e algoritmos desenvolvidos durante o pico da pandemia de COVID-19 podem ser reusados no caso de futuros surtos desta ou doenças infecciosas semelhantes.

Downloads

Não há dados estatísticos.

Referências

Abdel-Basset M, Chang V, Hawash H, et al. FSS-2019-nCov: A deep learning architecture for semi-supervised few-shot segmentation of COVID-19 infection. Knowl-Based Syst. 2021;212:106647. https://doi.org/10.1016/j.knosys.2020.106647.

Mondal MRH, Bharati S, Podder P. Diagnosis of COVID-19 using machine learning and deep learning: A review. Curr Med Imaging. 2021;17(12):1403–18. https://doi.org/10.2174/1573405617666210713113439.

Sedik A, Iliyasu AM, Abd El-Rahiem B, et al. Deploying machine and deep learning models for efficient data-augmented detection of COVID-19 infections. Viruses. 2020;12(7):769. https://doi.org/10.3390/v12070769.

Aboul-Fotouh S, Mahmoud AN, Elnahas EM, et al. What are the current anti-COVID-19 drugs? From traditional to smart molecular mechanisms. Virol J. 2023;20(1):241. https://doi.org/10.1186/s12985-023-02210-z.

Aslan MF, Sabanci K, Durdu A, et al. COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian Optimization. Comput Biol Med. 2022;142:105244. https://doi.org/10.1016/j.compbiomed.2022.105244.

Aggarwal P, Mishra NK, Fatimah B, et al. COVID-19 image classification using deep learning: Advances, challenges and opportunities. Comput Biol Med. 2022;144:105350. https://doi.org/10.1016/j.compbiomed.2022.105350.

Jia G, Lam H-K, Xu Y. Classification of COVID-19 chest X-Ray and CT images using a type of dynamic CNN modification method. Comput Biol Med. 2021;134:104425. https://doi.org/10.1016/j.compbiomed.2021.104425.

Fallahpoor M, Chakraborty S, Heshejin MT, et al. Generalizability assessment of COVID-19 3D CT data for deep learning-based disease detection. Comput Biol Med. 2022;145:105464. https://doi.org/10.1016/j.compbiomed.2022.105464.

Wu Y, Qi Q, Qi S, et al. Classification of COVID-19 from community-acquired pneumonia: Boosting the performance with capsule network and maximum intensity projection image of CT scans. Comput Biol Med. 2023;154:106567. https://doi.org/10.1016/j.compbiomed.2023.106567.

Awassa L, Jdey I, Dhahri H, et al. Study of different deep learning methods for coronavirus (COVID-19) pandemic: taxonomy, survey and insights. Sensors (Basel). 2022;22(5):1890. https://doi.org/10.3390/s22051890.

Fang L, Wang X. COVID-19 deep classification network based on convolution and deconvolution local enhancement. Comput Biol Med. 2021;135:104588. https://doi.org/10.1016/j.compbiomed.2021.104588.

Qi Q, Qi S, Wu Y, et al. Fully automatic pipeline of convolutional neural networks and capsule networks to distinguish COVID-19 from community-acquired pneumonia via CT images. Comput Biol Med. 2022;141:105182. https://doi.org/10.1016/j.compbiomed.2021.105182.

Shi F, Xia L, Shan F, et al. Large-scale screening to distinguish between COVID-19 and community-acquired pneumonia using infection size-aware classification. Phys Med Biol. 2021;66(6):065031. https://doi.org/10.1088/1361-6560/abe838.

Xu X, Jiang X, Ma C, et al. A deep learning system to screen novel coronavirus disease 2019 pneumonia. Engineering. 2020;6(10):1122–9. https://doi.org/10.1016/j.eng.2020.04.010.

Kuo K-M, Talley PC, Chang C-S. The accuracy of machine learning approaches using non-image data for the prediction of COVID-19: A meta-analysis. Int J Med Inf. 2022;164:104791. https://doi.org/10.1016/j.ijmedinf.2022.104791.

Baghdadi NA, Malki A, Abdelaliem SF, et al. An automated diagnosis and classification of COVID-19 from chest CT images using a transfer learning-based convolutional neural network. Comput Biol Med. 2022;144:105383. https://doi.org/10.1016/j.compbiomed.2022.105383.

Dey A, Chattopadhyay S, Singh PK, et al. MRFGRO: a hybrid meta-heuristic feature selection method for screening COVID-19 using deep features. Sci Rep. 2021;11(1):24065. https://doi.org/10.1038/s41598-021-02731-z.

Zhang X, Jiang R, Huang P, et al. Dynamic feature learning for COVID-19 segmentation and classification. Comput Biol Med. 2022;150:106136. https://doi.org/10.1016/j.compbiomed.2022.106136.

Carmo D, Campiotti I, Rodrigues L, et al. Rapidly deploying a COVID-19 decision support system in one of the largest Brazilian hospitals. Health Informatics J. 2021;27(3):14604582211033017. https://doi.org/10.1177/14604582211033017.

Shiri I, Sorouri M, Geramifar P, et al. Machine learning-based prognostic modeling using clinical data and quantitative radiomic features from chest CT images in COVID-19 patients. Comput Biol Med. 2021;132:104304. https://doi.org/10.1016/j.compbiomed.2021.104304.

Champendal M, Müller H, Prior JO, et al. A scoping review of interpretability and explainability concerning artificial intelligence methods in medical imaging. Eur J Radiol. 2023;169:111159. https://doi.org/10.1016/j.ejrad.2023.111159.

Javaheri T, Homayounfar M, Amoozgar Z, et al. CovidCTNet: an open-source deep learning approach to diagnose covid-19 using small cohort of CT images. NPJ Digit Med. 2021;4(1):29. https://doi.org/10.1038/s41746-021-00399-3.

Li L, Qin L, Xu Z, et al. Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy. Radiology. 2020;296(2):E65–71. https://doi.org/10.1148/radiol.2020200905.

Fan D-P, Zhou T, Ji G-P, et al. Inf-Net: Automatic COVID-19 lung infection segmentation from CT images. IEEE Trans Med Imaging. 2020;39(8):2626–37. https://doi.org/10.1109/TMI.2020.2996645.

Zhang K, Liu X, Shen J, et al. Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography. Cell. 2020;181(6):1423–33. https://doi.org/10.1016/j.cell.2020.04.045.

Wang X, Deng X, Fu Q, et al. A weakly-supervised framework for COVID-19 classification and lesion localization from chest CT. IEEE Trans Med Imaging. 2020;39(8):2615–25. https://doi.org/10.1109/TMI.2020.2995965.

Bao G, Chen H, Liu T, et al. COVID-MTL: Multitask learning with Shift3D and random-weighted loss for COVID-19 diagnosis and severity assessment. Pattern Recognit. 2022;124:108499. https://doi.org/10.1016/j.patcog.2021.108499.

Shiri I, Mostafaei S, Haddadi Avval A, et al. High-dimensional multinomial multiclass severity scoring of COVID-19 pneumonia using CT radiomics features and machine learning algorithms. Sci Rep. 2022;12(1):14817. https://doi.org/10.1038/s41598-022-18994-z.

Guhan B, Almutairi L, Sowmiya S, et al. Automated system for classification of COVID-19 infection from lung CT images based on machine learning and deep learning techniques. Sci Rep. 2022;12(1):17417. https://doi.org/10.1038/s41598-022-20804-5.

Li T, Wei W, Cheng L, et al. Computer-aided diagnosis of COVID-19 CT scans based on spatiotemporal information fusion. J Healthc Eng. 2021;2021:6649591. https://doi.org/10.1155/2021/6649591.

Tello-Mijares S, Woo L. Computed tomography image processing analysis in COVID-19 patient follow-up assessment. J Healthc Eng. 2021;2021:8869372. https://doi.org/10.1155/2021/8869372.

Topff L, Sánchez-García J, López-González R, et al. A deep learning-based application for COVID-19 diagnosis on CT: The Imaging COVID-19 AI initiative. PLoS One. 2023;18(5):e0285121. https://doi.org/10.1371/journal.pone.0285121.

Yang Z, Zhao L, Wu S, et al. Lung lesion localization of COVID-19 from chest CT image: A novel weakly supervised learning method. IEEE J Biomed Health Inform. 2021;25(6):1864–72. https://doi.org/10.1109/JBHI.2021.3067465.

Ortiz A, Trivedi A, Desbiens J, et al. Effective deep learning approaches for predicting COVID-19 outcomes from chest computed tomography volumes. Sci Rep. 2022;12(1):1716. https://doi.org/10.1038/s41598-022-05532-0.

Nguyen D, Kay F, Tan J, et al. Deep learning–based COVID-19 pneumonia classification using chest CT images: model generalizability. Front Artif Intell. 2021;4:694875. https://doi.org/10.3389/frai.2021.694875.

Goel T, Murugan R, Mirjalili S, et al. Automatic screening of COVID-19 using an optimized generative adversarial network. Cogn Comput. 2021. https://doi.org/10.1007/s12559-020-09785-7.

Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 2012;25. https://doi.org/10.1145/3065386

Kang D, Park S, Paik J. SdBAN: Salient object detection using bilateral attention network with dice coefficient loss. IEEE Access. 2020;8:104357–70. https://doi.org/10.1109/ACCESS.2020.2999627.

Rezatofighi H, Tsoi N, Gwak J, et al. Generalized intersection over union: A metric and a loss for bounding box regression. Proc. IEEECVF Conf. Comput. Vis. Pattern Recognit. 2019. p. 658–66. https://doi.org/10.48550/arXiv.1902.09630.

Zaborski D, Proskura WS, Grzesiak W, et al. The comparison between random forest and boosted trees for dystocia detection in dairy cows. Comput Electron Agric. 2019;163:104856. https://doi.org/10.1016/j.compag.2019.104856.

Publicado

2025-02-16

Como Citar

Sieredzinski, J., & Zaborski, D. (2025). O uso de métodos de aprendizado de máquina para classificação de imagens de tomografia computadorizada na pandemia da COVID-19: uma revisão. Revista De Epidemiologia E Controle De Infecção, 15(1). https://doi.org/10.17058/reci.v15i1.19227

Edição

Seção

ARTIGOS REVISÃO