Infecções relacionadas à assistência à saúde causadas por Candida spp. em neonatos críticos: uma análise das superfícies ambientais
DOI:
https://doi.org/10.17058/reci.v14i4.19358Palavras-chave:
Infecções Fúngicas Invasivas, Infecção Hospitalar, Controle de Infecções, Saúde do LactenteResumo
Justificativa e Objetivos: infecções fúngicas invasivas acarretam elevada morbimortalidade em Unidades de Terapia Intensiva Neonatal (UTINs) e estão acompanhadas de um aumento de isolados resistentes, evidenciando o ambiente hospitalar como fonte primordial de contaminação. Este estudo identificou espécies de Candida em neonatos em uma UTIN brasileira, avaliou suas condições clínicas e laboratoriais e caracterizou os isolados. Métodos: isolados de Candidade recém-nascidos (RNs) e do ambiente foram identificados e analisados quanto à resistência antifúngica, fatores de virulência e relação molecular. Resultados: quatro RNs apresentaram candidíase invasiva, como C. albicans (2 RNs), C. glabrata (1 RN) e C. parapsilosis sensu stricto (1 RN). Todos RNs eram extremamente prematuros (<29 semanas) e utilizaram algum dispositivo invasivo. Dois isolados clínicos demonstraram resistência, um ao fluconazol (C. parapsilosissensu stricto) e o outro à micafungina (C. glabrata). Cinco isolados ambientais foram identificados como C. parapsilosissensu stricto, e um deles mostrou susceptibilidade dependente da dose ao fluconazol. O biofilme foi o único fator de virulência produzido pelos nove isolados. A análise molecular revelou alta similaridade entre um isolado ambiental e um clínico de C. parapsilosis sensu stricto. Conclusões: os resultados indicaram a presença de espécies de Candida em neonatos e no ambiente da UTIN, com algumas demonstrando resistência in vitro ao fluconazol e à micafungina. Todos isolados produziram biofilme. Foi observada uma notável similaridade genética entre alguns dos isolados ambientais e clínicos, sugerindo o ambiente como uma possível fonte de infecção.
Downloads
Referências
Rakshit P, Nagpal N, Sharma S, et al. Effects of implementation of healthcare associated infection surveillance and interventional measures in the neonatal intensive care unit: Small steps matter. Indian Journal of Medical Microbiology. 2023; 44:100369. https://doi.org/10.1016/j.ijmmb.2023.100369.
Miyake A, Gotoh K, Iwahashi J, et al. Characteristics of Biofilms Formed by C. parapsilosis Causing an Outbreak in a Neonatal Intensive Care Unit. Journal of Fungi. 2022; 8(7). https://doi.org/10.3390/jof8070700.
Menezes RP, Melo SGO, Bessa MAS, et al. Candidemia by Candida parapsilosis in a neonatal intensive care unit: human and environmental reservoirs, virulence factors, and antifungal susceptibility. Braz J Microbiol. 2020; 51(3):851–60. https://doi.org/10.1007/s42770-020-00232-1.
Hsiao-Chuan L, Hsiang-Yu L, Bai-Hong S, et al. Reporting an outbreak of Candida pelliculosa fungemia in a neonatal intensive care unit. Journal of microbiology, immunology, and infection. 2013; 46(6):456-62. http://dx.doi.org/10.1016/j.jmii.2012.07.013
Riera FO, Caeiro JP, Angiolini SC, et al. Invasive Candidiasis: Update and Current Challenges in the Management of This Mycosis in South America. Antibiotics. 2022; 11(7). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9312041/.
Elkady MA, Bakr WMK, Ghazal H, et al. Role of environmental surfaces and hands of healthcare workers in perpetuating multi-drug-resistant pathogens in a neonatal intensive care unit. Eur J Pediatr. 2022; 181(2):619–28. https://doi.org/10.1007/s00431-021-04241-6.
Daneshnia F, Júnior JNA, Ilkit M, et al. Worldwide emergence of fluconazole-resistant Candida parapsilosis: current framework and future research roadmap. The Lancet Microbe. 2023; 4(6):e470–80. https://doi.org/10.1016/ S2666-5247(23)00067-8.
Nagarathnamma T, Chunchanur SK, Rudramurthy SM, et al. Outbreak of Pichia kudriavzevii fungaemia in a neonatal intensive care unit. Journal of Medical Microbiology. 2017; 66(12):1759–64. https://doi.org/10.1099/jmm.0.000645.
Qi L, Fan W, Xia X, et al. Nosocomial outbreak of Candida parapsilosis sensu stricto fungaemia in a neonatal intensive care unit in China. Journal of Hospital Infection. 2018; 100(4):e246–52. https://doi.org/10.1016/j.jhin.2018.06.009.
Riceto ÉBM, Menezes RP, Penatti MPA, et al. Enzymatic and hemolytic activity in different Candida species. Revista Iberoamericana de Micología. 2015; 32(2):79–82. https://dx.doi.org/10.1016/j.riam.2013.11.003.
Zhang Z, Cao Y, Li Y, Chen X, et al. Risk factors and biofilm formation analyses of hospital-acquired infection of Candida pelliculosa in a neonatal intensive care unit. BMC Infect Dis. 2021; 21(1):1–11. https://doi.org/10.1186/s12879-021-06295-1,
O’Leary EN, Edwards JR, Srinivasan A, et al. National Healthcare Safety Network 2018 Baseline Neonatal Standardized Antimicrobial Administration Ratios. Hosp Pediatr. 2022; 12(2):190–8. https://doi.org/10.1542/hpeds.2021-006253.
Menezes RP, Marques LA, Silva FF, et al. Inanimate Surfaces and Air Contamination with Multidrug Resistant Species of Staphylococcus in the Neonatal Intensive Care Unit Environment. Microorganisms. 2022; 10(3):567. https://doi.org/10.3390/microorganisms10030567.
Suleyman G, Alangaden G, Bardossy AC. The Role of Environmental Contamination in the Transmission of Nosocomial Pathogens and Healthcare-Associated Infections. Curr Infect Dis Rep. 2018; 20(6):1–11. https://doi.org/10.1007/s11908-018-0620-2.
Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Fourth Informational Supplement. Document M27-S4. Clinical and Laboratory Standards Institute; 2012. https://clsi.org/media/1897/m27ed4_sample.pdf
Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. Approved standard-M27-A3-S3. Clinical and Laboratory Standards Institute; 2008. https://clsi.org/media/1461/m27a3_sample.pdf
NCCLS. Método de Referência para Testes de Diluição em Caldo para a Determinação da Sensibilidade a Terapia Antifúngica das Leveduras; Norma Aprovada—Segunda Edição. NCCLS document M27-A2 [ISBN 1-56238-469-4]. 2o ed. EUA; 2002. https://bvsms.saude.gov.br/bvs/publicacoes/metodo_ref_testes_diluicao_modulo2.pdf
Stefan S, Peter S, Shabbir S, et al. Assessing the antimicrobial susceptibility of bacteria obtained from animals. Veterinary Microbiology. 2010; 141(1–2):1–4. https://doi.org/10.1016/j.vetmic.2009.12.013.
Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antifungal Susceptibility Testing of Yeasts. 1st ed. CLSI supplement M60. 1o ed. Wayne: CLSI; 2017. https://clsi.org/media/1895/m60ed1_sample.pdf
Clinical and Laboratory Standards Institute (CLSI). Epidemiological cutoff values for antifungal susceptibility testing. 2nd ed. CLSI supplement, M59. 2o ed. Clinical and Laboratory Standards Institute; 2018. https://clsi.org/media/1934/m59ed2_sample-updated.pdf
Pfaller MA, Diekema DJ. Progress in Antifungal Susceptibility Testing of Candida spp. by Use of Clinical and Laboratory Standards Institute Broth Microdilution Methods, 2010 to 2012. Journal of Clinical Microbiology. 2012; 50(9). https://doi.org/10.1128/jcm.00937-12.
Costa-Orlandi CB, Sardi JCO, Santos CT, et al. In vitro characterization of Trichophyton rubrum and T. mentagrophytes biofilms. Biofouling 2014; 30:6, 719-727. https://doi.org/10.1080/08927014.2014.919282.
Pierce CG, Uppuluri P, Tristan AR, et al. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc. 2008;3(9):1494–500. https://doi.org/10.1038/nprot.2008.141.
Marcos-Zambrano L, Pilar E, Emilio B, et al. Production of biofilm by Candida and non-Candida spp. isolates causing fungemia: comparison of biomass production and metabolic activity and development of cut-off points. International journal of medical microbiology : IJMM. 2014; 304(8). https://doi.org/10.1016/j.ijmm.2014.08.012.
Menezes PR, Silva FF, Melo SGO, et al. Characterization of Candida species isolated from the hands of the healthcare workers in the neonatal intensive care unit. Med Mycol. 2019; 57(5):588–94. https://doi.org/10.1093/mmy/myy101.
Riceto ÉBM, Menezes RP, Röder DVDB, et al. Molecular profile of oral Candida albicans isolates from hiv-infected patients and healthy persons. International Journal of Development Research (IJDR). 2017:14432–6. https://www.journalijdr.com/sites/default/files/issue-pdf/9523.pdf.
Furin WA, Tran LH, Chan MY, et al. Sampling efficiency of Candida auris from healthcare surfaces: culture and nonculture detection methods. Infection Control & Hospital Epidemiology. 2022; 43(10):1492–4. https://doi.org/10.1017/ice.2021.220.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Priscila Guerino Vilela, Isadora Caixeta da Silveira Ferreira, Ralciane de Paula Menezes, Mário Paulo Amante Penatti, Reginaldo dos Santos Pedroso, Denise Von Dolinger de Brito Röder

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
The author must state that the paper is original (has not been published previously), not infringing any copyright or other ownership right involving third parties. Once the paper is submitted, the Journal reserves the right to make normative changes, such as spelling and grammar, in order to maintain the language standard, but respecting the author’s style. The published papers become ownership of RECI, considering that all the opinions expressed by the authors are their responsibility. Because we are an open access journal, we allow free use of articles in educational and scientific applications provided the source is cited under the Creative Commons CC-BY license.