Statistical modeling of hospital admissions for pneumonia in Campo Grande
DOI:
https://doi.org/10.17058/reci.v11i3.15517Keywords:
Adults, Child, Hospitalization, Modeling, Pneumonia, Probability ModelsAbstract
Justification and Objectives: Brazil lacks consistent epidemiological data on the respiratory morbidity of children and older adults, which makes it difficult to plan and execute effective preventive and health promotion actions. The objective of this study was to analyze the adjustments of distributions (Weibull, Normal, Gamma, Logistic) of historical series of hospitalizations for respiratory diseases (total hospitalizations), from 2011 to 2015, in Campo Grande, Mato Grosso do Sul. Methods: to determine the statistical models, four statistical indicators (coefficient of determination, mean root square error, mean absolute error and mean absolute percentage error) were performed from 2011 to 2015. Parameter estimates are obtained for the models adopted in the study, with and without a regression structure. Results: the results showed that Weibull, Gamma, Normal and Logistic distributions, applied to the series of hospitalizations for respiratory diseases in Campo Grande, were satisfactory in determining the shape and scale parameters, and the statistical indicators R2, MAE, RSME and MAPE confirmed the data goodness-of-fit, and the graphical analysis indicated a satisfactory distribution fit. Conclusion: the analysis of monthly values indicates that Gamma is the best of the four distributions based on those selected. The regression model can be adjusted to the data and used as an alternative distribution that describes the hospitalization data considered in Campo Grande, Brazil.
Downloads
References
Shukla S.D. et al. Infection-Induced Oxidative Stress in Chronic Respiratory Diseases. In: Maurya P., Dua K. (eds) Role of Oxidative Stress in Pathophysiology of Diseases. Springer, Singapore. 2020. pp 125-147. https://doi.org/10.1007/978-981-15-1568-2_8
Souza A, Aristone F, Fernandes WA, Olaofe Z, Abreu MC, Oliveira Júnior, JF, Cavazzana, G, Santos, CM. Statistical Behavior of Hospital Admissions for Respiratory Diseases by Probability Distribution Functions. J Infect Dis Epidemiol 2019, 5(6):098. http://dx.doi.org/10.23937/2474-3658/1510098
Tizgui I, El Guezar F, Bouzahir H, Benaid B. Comparison of Methods in Estimating Weibull Parameters for Wind Energy Applications. International Journal of Energy Sector Management 2017, 11(4): 650-663. https://doi.org/10.1108/IJESM-06-2017-0002
Mohammadi K, Alavi O, McGowan JG. Use of Birnbaum-Saunders distribution for estimating wind speed and wind power probability distributions: A review. Energy Conversation and Management, 2017, 143: 109–122. https://doi.org/10.1016/j.enconman.2017.03.083
Roman V V L, Carvalho Júnior, J A, Nascimento L F, Cesar A C G. Efeitos de poluentes do ar e doenças respiratórias utilizando dados estimados por modelo matemático. Revista Ambiente e Água 2015, 10(4): 825-831. http://dx.doi.org/10.4136/ambi-agua.1592
César A C G, Nascimento L F C, Mantovani K C C, Vieira L C P. Material particulado fino estimado por modelo matemático e internações por pneumonia e asma em crianças. Revista Paulista de Pediatria 2016, 34(1): 18-23. https://doi.org/10.1016/j.rppede.2015.12.005
Nascimento A P S, Santos J, Mill J G, Souza J B, Reis Júnior N C, Reisen V A. Associação entre concentração de partículas finas na atmosfera e doenças respiratórias agudas em crianças. Revista de Saúde Pública 2017, 51(3): 1-10. https://doi.org/10.1590/S1518-8787.2017051006523
Shen Y, Wu Y, Chen G, Van Grinsven H J M, Wang X, Gu B, Lou X. Non-linear increase of respiratory diseases and their costs under severe air pollution. Environmental Pollution 2017, 224(1): 631-637. https://doi.org/10.1016/j.envpol.2017.02.047
Orona N S, Ferraro S A, Astort F, Morales C, Brittes F, Boero L, Tiscornia G, Maglione G A, Saldiva P H N, Yakisch S, Tasat D R. Acute exposure to Buenos Aires air particles (UAP-BA) induces local and systemic inflammatory response in middle-aged mice: A time course study. Environmental Pollution 2016, 208(A): 261-270. https://doi.org/10.1016/j.envpol.2015.07.020
Ambiente M D M. Poluentes atmosféricos. 2018. Disponível em: < http://www.mma.gov.br/cidades-sustentaveis/qualidade-doar/poluentesatmosf%C3%A9ricos#Material_particulado
Souza A, Ozonur D. Statistical Behavior of O3, OX, NO, NO2, and NOx in Urban Environment. Ozone-Science & Engineering The Journal of the International Ozone Association 2019, 42(1): 1-13. https://doi.org/10.1080/01919512.2019.1602468
Souza A, Aristone F, Fernandes W A, Olaofe Z, Oliveira A P G, Carvalho M A, Oliveira-Junior J F, Cavazzana G, Santos C M, Soares D G. Analysis of Ozone Concentrations Using Probability Distributions. Ozone-Science & Engineering The Journal of the International Ozone Association 2020, 1-12. https://doi.org/10.1080/01919512.2020.1736987
César A C G, Carvalho Jr J A, Nascimento L F C. Association between NOx exposure and deaths caused by respiratory diseases in a medium-sized Brazilian city. Brazilian Journal of Medical and Biological Research 2015, 48(12): 1130–1135. https://doi.org/10.1590/1414-431x20154396
Carvalho E K M A, Dantas R T, Carvalho J R M. Análise da influência entre as variáveis meteorológicas e doenças respiratórias na cidade de Campina Grande, PB. Revista Brasileira de Climatologia 2016, 18(12): 63- 79. http://dx.doi.org/10.5380/abclima.v18i0.41099
César A C G, Nascimento L F C, Mantovani K C C, Vieira L C P. Material particulado fino estimado por modelo matemático e internações por pneumonia e asma em crianças. Revista Paulista de Pediatria 2016, 34(1): 18-23. https://doi.org/10.1016/j.rppede.2015.12.005
Leotte J, Trombetta H, Faggion H Z, Almeida B M, Nogueira M B, Vidal L R, Rabon S M. Impact and seasonality of human rhinovirus infection in hospitalized patients for two consecutive years. Jornal de Pediatria 2017, 93(3): 294-300. https://doi.org/10.1016/j.jped.2016.07.004
Souza A, Santos D A S, Oliveira-Junior J F, Garcia A P O, Silva L B. Modeling of hospital admissions for respiratory diseases as a function of probability distribution functions. Research, Society and Development 2020, 9(8): 1-17. http://dx.doi.org/10.33448/rsd-v9i8.6501
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Amaury de Souza
This work is licensed under a Creative Commons Attribution 4.0 International License.
The author must state that the paper is original (has not been published previously), not infringing any copyright or other ownership right involving third parties. Once the paper is submitted, the Journal reserves the right to make normative changes, such as spelling and grammar, in order to maintain the language standard, but respecting the author’s style. The published papers become ownership of RECI, considering that all the opinions expressed by the authors are their responsibility. Because we are an open access journal, we allow free use of articles in educational and scientific applications provided the source is cited under the Creative Commons CC-BY license.