Relationship of the metabolic syndrome components with lipid indexes and anthropometric parameters in rural workers: exploratory factor analysis

Authors

DOI:

https://doi.org/10.17058/reci.v11i4.16685

Keywords:

Síndrome metabólica, Antropometria, Índice, Saúde da População Rural, Trabalhadores rurais

Abstract

Background and Objectives: The search for simple and rapid screening indicators for metabolic syndrome (MS) is important due to its high frequency in the adult population. And this aspect is little explored in the rural Brazilian population. The objective of this study was to verify the relationship of SM components with lipid indices and anthropometric parameters in rural workers. Methods: Cross-sectional study with rural workers aged 18 years or older. The SM was determined by harmonized criteria. The fasting glucose (GLI), systolic (SBP) and diastolic (DBP) blood pressure, HDL-c and waist circumference (WC); anthropometric parameters: body mass index (BMI), waist/height ratio (WHtR) and body fat percentage (%F); and lipid indices: glycemic triglyceride index (TyG), lipid accumulation product (LAP) and visceral adiposity index (VAI). Exploratory factor analysis was performed that included, in model I, the anthropometric parameters and, in model II, the lipid indices. Results:  the 167 workers, 21.0% were elderly (≥60 years), 39.5% were male and 61.1% had MS, with a higher prevalence in females. Model II responded to the higest explained variance (78.43%) including metabolic (VAI, LAP, TyG and TG and -HDL-c), cardiometabolic (SBP, DBP and CC) and glycemic factors. Model I explained 70.4% of the variance, which included excess weight, blood pressure and lipid/glycemic factors. Conclusion: the model that included the lipid indices explained the greatest variance observed and the VAI presented the most significant load of this factor.

Downloads

Download data is not yet available.

Author Biographies

Analie Nunes Couto, Universidade de Santa Cruz do Sul

Programa de Pós-Graduação em Gerontologia Biomédica. Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul

Carla Helena Augustin Schwanke, Pontifícia Universidade Católica do Rio Grande do Sul

Programa de Pós-Graduação em Gerontologia Biomédica. Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul

Hildegard Hedwig Pohl, Universidade de Santa Cruz do Sul

Programa de Pós-Graduação em Promoção da Saúde – Mestrado e Doutorado, Universidade de Santa Cruz do Sul

References

Alberti KGMM, Eckel RH, Grundy SM, et al. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–1645. https://doi.org/10.1161/circulationaha.109.192644

Marques, MV, Santos SSAN, Lima MV, et al. Distribuição espacial da mortalidade por diabetes no Brasil. Revista Saúde e Desenvolvimento Humano. 2020; 8(3): 113-122. http://dx.doi.org/10.18316/sdh.v8i3.6135

Oliveira LVA, Santos BNS, Machado IE, et al. Prevalência da Síndrome Metabólica e seus componentes na população adulta brasileira. Ciência & Saúde Coletiva 2020;25(11): 4269-4280. https://doi.org/10.1590/1413-812320202511.31202020

Pimenta AM, Gazzinelli A, Velasquez-Melendez G. Prevalência da síndrome metabólica e seus fatores associados em área rural de Minas Gerais (MG, Brasil). Ciênc saúde coletiva. 2011;16(7): 3297-3306. https://doi.org/10.1590/S1413-81232011000800029

Gu Z, Li D, He H, et al. Body mass index, waist circumference, and waist-to-height ratio for prediction of multiple metabolic risk factors in Chinese elderly population. Sci Rep. 2018;8(1):385. https://doi.org/10.1038/s41598-017-18854-1

Nascimento-Ferreira MV, Rendo-Urteaga T, Vilanova-Campelo RC, et al. The lipid accumulation product is a powerful tool to predict metabolic syndrome in undiagnosed Brazilian adults. Clin Nutr. 2017;36(6):1693-1700. https://doi.org/10.1016/j.clnu.2016.12.020

Amato MC, et al. Visceral Adiposity Index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care. 2010;33(4) :920-922.

https://doi.org/10.2337/dc09-1825

Kahn HS. The "lipid accumulation product" performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison. British Medical association Cardiovasc Disord. 2005; 5 :1-26, 2005.

https://doi.org/10.1186/1471-2261-5-26

Simental-Mendia LE, Rodriguez-Moran M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6:299–304. https://doi.org/10.1089/met.2008.0034

Heyward VH. Avaliação física e prescrição de exercício: técnicas avançadas. 6. ed. Porto Alegre: Artmed, 2013. xvi, 485 p.

Malachias, MVB, Plavnik FL, Machado CA, et al. 7ª Diretriz Brasileira de Hipertensão Arterial: Capítulo 1 - Conceituação, Epidemiologia e Prevenção Primária. (2016). Arquivos Brasileiros de Cardiologia. 107(3, Suppl. 3), 1-6. https://doi.org/10.5935/abc.20160151

Tsai TY, Hsu PF, Lin CC, et al. Factor analysis for the clustering of cardiometabolic risk factors and sedentary behavior, a cross-sectional study. PloS one. 2020; 15(11): e0242365. https://doi.org/10.1371/journal.pone.0242365

Deshmukh PR, Kamble P, Goswami K, et al. Metabolic syndrome in the rural population of wardha, central India: an exploratory factor analysis. Indian J Community Med. 2013;38(1):33-38. https://doi.org/10.4103/0970-0218.106625

Couto AN, Kleinpaul WV, Renner JDP et al. Nutritional status, insulin resistance and cytokine biomarkers: principal component analysis approach. IJDR. 2019; 09(10): 30659-30664. https://www.journalijdr.com/nutritional-status-insulin-resistance-and-cytokine-biomarkers-principal-component-analysis-approach

Rochlani Y, Pothineni NV, Kovelamudi S, et al. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis. 2017;11(8):215-225. https://doi.org/10.1177/1753944717711379

Nolan CJ, Prentki M. Insulin resistance and insulin hypersecretion in the metabolic syndrome and type 2 diabetes: Time for a conceptual framework shift. Diab Vasc Dis Res. 2019;16(2):118-127. https://doi.org/10.1177/1479164119827611

McCracken E, Monaghan M, Sreenivasan S. Pathophysiology of the metabolic syndrome. Clin Dermatol. 2018;36(1):14-20. https://doi.org/10.1016/j.clindermatol.2017.09.004

Guerrero-Romero F, Simental-Mendía LE, González-Ortiz M, et al. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010;95(7):3347-51. https://doi.org/10.1210/jc.2010-0288

Mirmiran P, Bahadoran Z, Azizi F. Lipid Accumulation Product Is Associated with Insulin Resistance, Lipid Peroxidation, and Systemic Inflammation in Type 2 Diabetic Patients. Endocrinology and Metabolism. 2014;29(4):443-449.

https://doi.org/10.3803/EnM.2014.29.4.443

Li R, Li Q, Cui M, et al. Clinical surrogate markers for predicting metabolic syndrome in middle-aged and elderly Chinese. J Diabetes Investig. 2018;9(2):411-418. https://doi.org/10.1111/jdi.12708

Shin KA, Kim YJ. Usefulness Of Surrogate Markers Of Body Fat Distribution For Predicting Metabolic Syndrome In Middle-Aged And Older Korean Populations. Diabetes Metab Syndr Obes. 2019;12:2251-2259.

https://dx.doi.org/10.2147%2FDMSO.S217628

Raimi TH, Dele-Ojo BF, Dada SA, et al. Triglyceride-Glucose Index and Related Parameters Predicted Metabolic Syndrome in Nigerians. Metab Syndr Relat Disord. 2021;19(2):76-82. https://doi.org/10.1089/met.2020.0092

Chiu TH, Huang YC, Chiu H, et al. Comparison of Various Obesity-Related Indices for Identification of Metabolic Syndrome: A Population-Based Study from Taiwan Biobank. Diagnostics (Basel). 2020;10(12):1081.

https://doi.org/10.3390/diagnostics10121081

Brinkley TE, Hsu FC, Beavers KM, et al. Total and abdominal adiposity are associated with inflammation in older adults using a factor analysis approach. J Gerontol A Biol Sci Med Sci. 2012;67(10):1099-1106. https://doi.org/10.1093/gerona/gls077

Published

2022-04-07

How to Cite

Couto, A. N., Schwanke, C. H. A., & Pohl, H. H. (2022). Relationship of the metabolic syndrome components with lipid indexes and anthropometric parameters in rural workers: exploratory factor analysis. Revista De Epidemiologia E Controle De Infecção, 11(4). https://doi.org/10.17058/reci.v11i4.16685

Issue

Section

ORIGINAL ARTICLE