Epidemiological model for the construction of scenarios of the dissemination of COVID-19 in Codó-MA

Authors

DOI:

https://doi.org/10.17058/reci.v13i1.17853

Keywords:

COVID-19. Simulations. Sub-Registration. Social isolation. Morbidity.

Abstract

Background and objectives: due to the increase in the number of cases of the new coronavirus in the city of Codó-MA, there was a need to carry out a study on the spread of COVID-19 in the municipality in order to have a better knowledge and understanding of the problem. A study was carried out on the spread of COVID-19 in the city of Codó-MA, comparing the quantitative data on the number of cases in 2020 and 2021 between May and July and using the epidemiological model Susceptible-Infectious-Isolated-Recovered (SIQR). Methods: we collected daily data from the epidemiological bulletins made available by the Municipal Health Department of Codó (SEMUS-Codó), we chose the SIQR compartmental model to carry out the simulations, we assumed hypotheses and estimated the parameters in order to design the scenarios. We simulated scenarios such as social distancing of healthy individuals and social isolation of infected individuals. Results: in early 2020, cases increased more frequently than in early 2021, and approximately 20% of those infected were in social isolation. According to projections, more than 80% of cases of COVID-19 were not accounted for in Codó. In 2021, there was greater underreporting than in 2020, approximately 82% and 85%, respectively. Conclusion: from the results, the authors conclude that the social isolation of those infected is a more efficient method to contain an epidemic than the total blockade of the population and that the high number of underreported cases is because most of these cases are asymptomatic.

Downloads

Download data is not yet available.

References

Ministério da Saúde (BR). Acha que está com sintomas da COVID-19?. https://www.coronavirus.ms.gov.br/?page_id=29.

G1. Governo confirma o primeiro caso do novo coronavírus no Maranhão. https://g1.globo.com/ma/maranhao/noticia/2020/03/20/governo-confirma-o-primeiro-caso-do-novo-coronavirus-no-maranhao.ghtml.

Camilo MJ, Moura DFC, Salles RM. Modelagem matemática para epidemia de COVID-19 no Brasil. Rev Mil de Ciência e Tecn. 2020; 2(37):1-12. http://ebrevistas.eb.mil.br/CT/article/view/6772.

Gomes SCP, Monteiro IO, Rocha CR. Modelagem dinâmica da COVID-19 com aplicação a algumas cidades brasileiras. Revista Thema. 2020; 18:1-25. https://periodicos.ifsul.edu.br/index.php/thema/article/view/1793.

Ma J, Dushoff J, Bolker B. et al. Estimating Initial Epidemic Growth Rates. Bull Math Biol. 2013; 76:245-260. https://doi.org/10.1007/s11538-013-9918-2.

Floquet S, Leite TN, Câmera RCP. et al. A matemática no combate à epidemia: estudo sobre a COVID-19 na região do vale do são Francisco. REVASF. 2021; 24(11):100-146. Disponível em: https://www.periodicos.univasf.edu.br/index.php/revasf/article/view/1561.

Huppert A, Katriel G. Mathematical modeling, and prediction in infectious disease epidemiology. CMI. 2013; 11(19):999-1005. https://doi.org/10.1111/1469-0691.12308.

Bertone AMA, Bassanezi RC, Jafelice RSM. Modelagem Matemática. Uberlândia, MG:UFU, 2014. https://repositorio.ufu.br/handle/123456789/25315.

Rocha DIC. Modelos matemáticos aplicados à epidemiologia. Porto. Dissertação [Mestrado em Métodos Quantitativos em Economia e Gestão] - Faculdade de Economia da Universidade do Porto; 2012. https://repositorio-aberto.up.pt/bitstream/10216/63680/2/ModelosMatematicosAplicadosaepidemiologia100485006DianaRochaMQEG.pdf.

Khan MA, Atangana A. Modeling the dynamics of novel coronavirus (2019 n Cov) with fractional derivative. Alex Eng J. 2020; 4(59):2379-2389. https://doi.org/10.1016/j.aej.2020.02.033.

IBGE. Cidades e Estados. https://www.ibge.ghgfov.br/cidades-e-estados/ma/codo.html.

Li XP, Ullah S, Zahir H. et al. Modeling the dynamics of coronavirus with super-spreader class: A fractal-fractional approach. Results Phys. 2022; 34:105179. https://doi.org/10.1016/j.rinp.2022.105179.

Bitar S, Steinmetz WA. Scenarios for the Spread of COVID-19 in Manaus, Northern Brazil. An Acad Bras Ciênc 2020; 92(4):1-12. https://doi.org/10.1590/0001-3765202020200615.

Li R, Pei S, Chen B. et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science. 2020; 6490(368):489-493. https://doi:10.1126/science.abb322.

IBGE. Síntese de indicadores sociais uma análise das condições de vida da população brasileira. https://necat.ufsc.br/sintese-de-indicadores-sociais-ibge/.

Driessche PVD, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci. 2021; 2(180):29-48. https://doi.org/10.1016/S0025-5564(02)00108-6.

Zhan C, Shao L, Zhang X. et al. Estimating unconfirmed COVID-19 infection cases and multiple waves of pandemic progression with consideration of testing capacity and non-pharmaceutical interventions: A dynamic spreading model. Inf. Sci. 2022; 607:418-439. https://doi.org/10.1016/j.ins.2022.05.093.

Ma Y, Xu S, An Q. et al. Coronavirus disease 2019 epidemic prediction in Shanghai under the ‘‘dynamic zero-COVID policy” using time-dependent SEAIQR model. J Biosaf Biosecur. 2022; 2(4):105-113. https://doi.org/10.1016/j.jobb.2022.06.002.

Adnan, Ali A, Rahman M. Investigation of time-fractional SIQR Covid-19 mathematical model with fractal-fractional Mittage-Leffler kernel. Alex Eng J. 2022, 10(61):7771-7779. https://doi.org/10.1016/j.aej.2022.01.030.

Published

2023-05-26

How to Cite

Lisboa dos Santos, A., & da Silva Rodrigues , L. R. . (2023). Epidemiological model for the construction of scenarios of the dissemination of COVID-19 in Codó-MA. Revista De Epidemiologia E Controle De Infecção, 13(1). https://doi.org/10.17058/reci.v13i1.17853

Issue

Section

ORIGINAL ARTICLE