Factores socioambientales que contribuyen a alta incidencia de COVID-19 en ciudad fronteriza del norte de Uruguay

Autores/as

DOI:

https://doi.org/10.17058/reci.v14i1.18597

Palabras clave:

COVID-19, Spatial-Temporal Analysis, Uruguay, Social Mobility, Socioeconomic Level, Population Density

Resumen

Justificación y Objetivos: el estudio se realizó en la ciudad de Rivera, situada en el norte del país en la frontera con Brasil. La enfermedad progresó lentamente durante 2020, con brotes posteriores seguidos de un rápido aumento de la incidencia. El objetivo fue explorar la relación entre la distribución espacial de los casos de COVID-19 en una ciudad binacional y variables como nivel socioeconómico, densidad poblacional y patrones de movilidad, con el objetivo de informar políticas públicas. Métodos: se realizó un estudio exploratorio entre agosto 2020 y enero 2021 con datos del Ministerio de Salud, considerando semanas epidemiológicas. Las variables explicativas consideradas fueron densidad poblacional, nivel socioeconómico y movilidad. Se identificaron tres periodos temporales desde agosto 2020 hasta enero 2021. Se analizo la autocorrelación espacial empleando el Índice de Moran y estadística Gi* (Getis & Ord). Mediante el análisis de cluster jerárquico, fue posible identificar grupos homogéneos de segmentos censales. Resultados: se georreferenciaron un total de 1.846 casos. Mediante análisis de cluster jerárquico, se identificaron siete grupos homogéneos. Para el nivel alto socioeconómico, la movilidad es el factor explicativo de una mayor incidencia de casos. Mientras que, para para el grupo de nivel bajo, la densidad de la población fue el factor explicativo de las diferencias en la presentación de la enfermedad. Conclusión: la población a ser priorizada en esta ciudad corresponde a aquellas zonas con mayor densidad poblacional y donde se incrementa la movilidad. El análisis territorial a pequeña escala genera información para la construcción de política local, ante una crisis sanitaria, que la hace más eficaz.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Mariana Gomez-Camponovo, Universidad de la Republica

Formación: Dra. en Ciencias por la Escuela de Salud Pública de Brasil, Fiocruz. Magister en Salud Publica ( c) Epidemiologia por la Facultad de Medicina de la Universidad de Chile. Maestra en Ciencias ( c) Salud Ambiental por el Instituto de Salud Pública de México . Especialista en Epidemiologia y Especialista en Salud Ocupacional,  por la Escuela de Graduados de la Facultad de Medicina. Universidad de la Republica. Doctora en Medicina por la Facultad de Medicina. Universidad de la Republica.

Desempeño actual como Profesora Titular con Dedicación Total ,  en la Unidad  de Medicina Social, CENUR Litoral Norte de la Universidad de la Republica.

Citas

Gómez-Camponovo M, Achkar M. Environmental health compromised by a new epidemic. The case of Uruguay, COVID-19. Rev Univ Ind Santander Salud. (2020) 52: 327-332. https://doi.org/10.18273/revsal.v52n3-2020013

World Health Organization. Coronavirus disease (COVID-19) Weekly Epidemiological Update. (2021). https://reliefweb.int/report/world/coronavirus-disease-covid-19-weekly-epidemiological-update-27-january-2021

Ministry of Public Health, Uruguay. Epidemiology Division. COVID-19 epidemiological report. Updated on July 28, 2020. https://www.gub.uy/ministerio-salud-publica/comunicacion/publicaciones/informe-epidemiologico-fecha-28-julio-2020

Ministry of Public Health, Uruguay. Epidemiology Division. COVID-19 epidemiological report. Updated on February 14, 2021. https://www.gub.uy/ministerio-salud-publica/comunicacion/noticias/informe-epidemiologico-covid-19-actualizado-18-enero-2021

Colmenares-Mejía C C, Serrano-Díaz N, Quintero-Lesmes D C, et al. Seroprevalence of SARS-CoV-2 Infection among Occupational Groups from the Bucaramanga Metropolitan Area, Colombia. International Journal of Environmental Research and Public Health. (2021) 18: 4172. https://doi.org/10.3390/ijerph18084172

Heiskanen A, Galipeau Y, Langlois M A, et al. SARS-CoV-2 Seroprevalence in Those Utilizing Public Transportation or Working in the Transportation Industry: A Rapid Review. International Journal of Environmental Research and Public Health. (2022) 19 :11629. https://doi.org/10.3390/ijerph191811629

Ellingjord-Dale M, Kalleberg K T, Istre M S, et al. The use of public transport and contraction of SARS-CoV-2 in a large prospective cohort in Norway. BMC Infectious Diseases. (2022) 22: 252. https://doi.org/10.1186/s12879-022-07233-5

Ministry of Public Health, Uruguay. Epidemiology Division. COVID-19 epidemiological report. Updated on October 30, 2020. https://www.gub.uy/ministerio-salud-publica/comunicacion/noticias/informe-epidemiologico-covid-19-del-30-octubre-2020

National Emergency System. Rivera's Cecoed and Santana do Livramento's Cecoed develop actions to control the spread of COVID-19. Updated on January 8, 2024. https://www.gub.uy/sistema-nacional-emergencias/comunicacion/noticias/cecoed-rivera-su-par-santana-do-livramento-desarrollan-acciones-para

Liu Y, Wang Z, Rader B, et al. Associations between changes in population mobility in response to the COVID-19 pandemic and socioeconomic factors at the city level in China and country level worldwide: a retrospective, observational study. Lancet Digit Health. (2021) 3(6):e349-e359. https://doi.org/10.1016/S2589-7500(21)00059-5

Ying YH, Lee WL, Chi YC, et al. Demographics, socioeconomic context, and the spread of infectious disease: The case of COVID-19. Int J Environ Res Public Health. (2022) 19: 2206. https://doi.org/10.3390/ijerph19042206

Irandoost K, Alizadeh H, Yousefi Z, et al. Spatial analysis of population density and its effects during the Covid-19 pandemic in Sanandaj, Iran. J Asian Architecture Building Eng. (2022) 0: 1-8. https://doi.org/10.1080/13467581.2022.2047983

Wang HY, Yamamoto N. Using a partial differential equation with Google Mobility data to predict COVID-19 in Arizona. Math Biosci Eng. (2020) 17(5): 4891-4904. https://doi.org/10.48550/arXiv.2006.16928

Leyva FR, Rojas K, Aracena B. Blocking the spread of COVID-19: Global border closure policies in Central America and Mexico, Int Dev Pol | Revue internationale de politique de développement. (2022). https://doi.org/10.4000/poldev.4894

Sulyok M, Walker M. Community movement and COVID-19: a global study using Google’s Community Mobility Reports. Epidemiol Infect. (2020) 148: e284, 1–9. https://doi.org/10.1017/S0950268820002757

Oluyomi AO, Gunter SM, Leining LM, et al. COVID-19 Community incidence and associated neighborhood-level characteristics in Houston, Texas, USA. Int J Environ Res Public Health. (2021) 18: 1495. https://doi.org/10.3390/ijerph18041495

Ministry of Social Development. National Department of Evaluation and Monitoring. Departmental Reports. Rivera. Updated January 8, 2024. https://www.gub.uy/ministerio-desarrollo-social/sites/ministerio-desarrollo-social/files/documentos/publicaciones/Informe%20Rivera.pdf

Economic and social overview of Latin America and the Caribbean (ECLAC) | Comisión Económica para América Latina y el Caribe (CEPAL). Ingresos y pobreza en los países del MERCOSUR: nuevos retos para economías en transición al desarrollo. Documentos de Proyectos (LC/TS.2019/63). Santiago, Comisión Económica para América Latina y el Caribe (CEPAL). (2019). https://repositorio.cepal.org/handle/11362/44929

Moran, P. A. (1948). The interpretation of statistical maps. Journal of the Royal Statistical Society. Series B (Methodological), 10(2), 243–251.

Mir D, Rego N, Resende PC, et al. Recurrent dissemination of SARS-CoV-2 through the Uruguayan–Brazilian border. Front. Microbiol. (2021) 12:653986. https://doi.org/10.3389/fmicb.2021.653986

Paniz-Mondolfi A, Muñoz M, Florez C, et al. (2020). SARS-CoV-2 spread across the Colombian-Venezuelan border. Infection, genetics and evolution. (2020) 86: 104616. https://doi.org/10.1016/j.meegid.2020.104616

Rocha-Jimenez T, Olivari C, Martínez A, et al. "Border closure only increased precariousness": a qualitative analysis of the effects of restrictive measures during the COVID-19 pandemic on Venezuelan's health and human rights in South America. BMC public health. (2023) 23: 1846. https://doi.org/10.1186/s12889-023-16726-0

Quandt A, Keeney A J, Flores L, et al. "We left the crop there lying in the field": Agricultural worker experiences with the COVID-19 pandemic in a rural US-Mexico border region. Journal of rural studies. (2022) 95 :533–543. https://doi.org/10.1016/j.jrurstud.2022.09.039

Ehlert A. The socio-economic determinants of COVID-19: A spatial analysis of German county level data. Socioecon Plann Sci. (2021) 78:101083. https://doi.org/10.1016/j.seps.2021.101083

Kadi N, Khelfaoui M. Population density, a factor in the spread of COVID-19 in Algeria: statistic study. Bull Natl Res Cen. (2020) 44:138. https://doi.org/10.1186/s42269-020-00393-x

da Silva CFA, Silva MC, Dos Santos AM, et al. Spatial analysis of socio-economic factors and their relationship with the cases of COVID-19 in Pernambuco, Brazil. Trop Med Int Health. (2022) 27:397-407. https://doi.org/10.1111/tmi.13731

Zhang H, Liu Y, Chen F, et al. The effect of sociodemographic factors on COVID-19 incidence of 342 cities in China: a geographically weighted regression model analysis. BMC Infect Dis. (2021) 428. https://doi.org/10.1186/s12879-021-06128-1

García CN. Socioeconomic, demographic and healthcare determinants of the COVID-19 pandemic: an ecological study of Spain. BMC Public Health. (2021) 21(1):606. https://doi.org/10.1186/s12889-021-10658-3

Szocska M, Pollner P, Schiszler I, et al. Countrywide population movement monitoring using mobile devices generated (big) data during the COVID-19 crisis. Sci Rep. (2021) 11:5943. https://doi.org/10.1038/s41598-021-81873-6

Tortolero GA, Otto MO, Ramphul R, et al. Examining social vulnerability and the association with COVID-19 incidence in Harris County, Texas. Front Public Health. (2022) 9:798085. https://doi.org/10.3389/fpubh.2021.798085

Nguyen P Y, Astell-Burt T, Rahimi-Ardabili H, & Feng X. Green Space Quality and Health: A Systematic Review. International journal of environmental research and public health. (2021). 18(21), 11028. https://doi.org/10.3390/ijerph182111028

Moosa IA, Khatatbeh IN. The density paradox: Are densely‐populated regions more vulnerable to Covid‐19? Int J Health Plann Manage. (2021) 36:1575–1588. https://doi.org/10.1002/hpm.3189

McGowan V J & Bambra C. COVID-19 mortality and deprivation: pandemic, syndemic, and endemic health inequalities. The Lancet. Public health. (2022) 7: e966–e975. https://doi.org/10.1016/S2468-2667(22)00223-7

Daras K, Alexiou A, Rose T C, et al. How does vulnerability to COVID-19 vary between communities in England? Developing a Small Area Vulnerability Index (SAVI). Journal of Epidemiology and Community Health. (2021) 75: 729–734. https://doi.org/10.1136/jech-2020-215227

##submission.downloads##

Publicado

2024-03-23

Cómo citar

Achkar, M., Gomez-Camponovo, M., Perez , N. ., & Umpierrez, E. (2024). Factores socioambientales que contribuyen a alta incidencia de COVID-19 en ciudad fronteriza del norte de Uruguay. Revista De Epidemiologia E Controle De Infecção, 14(1). https://doi.org/10.17058/reci.v14i1.18597

Número

Sección

ARTIGO ORIGINAL