AVALIAÇÃO DO POTENCIAL DE FICORREMEDIAÇÃO DE FÁRMACOS BETA-BLOQUEADORES ATRAVÉS DA MICROALGA SCENEDESMUS SUBSPICATUS

Autores

DOI:

https://doi.org/10.17058/rjp.v14i2.19364

Palavras-chave:

Microalgas, Fármacos, Biorremediação, Scenedesmus

Resumo

Atualmente, a presença de contaminantes farmacêuticos em águas residuárias tem sido cada vez mais detectada. Devido à complexidade de diversos compostos farmacêuticos os métodos de tratamento convencionais têm uma baixa taxa de sucesso e são insuficientes no tratamento desses contaminantes. A biorremediação baseada em microalgas é um método prático, sustentável, econômico e ambientalmente amigável para tratar diversos poluentes. Neste estudo utilizou-se a microalga Scenedesmus subspicatus a fim de avaliar seu potencial de ficorremediação de um mix de fármacos betabloqueadores (propranolol e atenolol) adicionados ao meio de cultivo. A microalga foi cultivada em meio NPK 3 g L-1 com e sem fonte de carbono inorgânico, em incubadora shaker, com fotoperíodo (16:8). Nos experimentos foi realizada a comparação da ficorremediação com S. subspicatus com condições análogas sem microalga, correspondendo ao efeito da hidrólise e ao efeito da fotólise das moléculas do mix. A avaliação da ficorremediação foi através de análise por cromatografia líquida de ultra-alta eficiência acoplada à espectrometria de massas em série. As avaliações foram realizadas em triplicatas a cada 7 dias, durante 21 dias. A microalga foi responsável pela remoção total dos betabloqueadores avaliados em 14 dias e no período avaliado não foi observada a mesma taxa de remoção na fotólise ou hidrólise, indicando que o maior agente de remoção foi a microalga. Dessa forma, constata-se que a ficorremediacão com a S. subspicatus pode se tornar uma alternativa que complementaria os processos tradicionais de tratamento de efluentes, permitindo a remoção de poluentes emergentes, como os betabloqueadores analisados.

Downloads

Não há dados estatísticos.

Referências

ANGULO, E. et al. Bioremediation of Cephalexin with non-living Chlorella sp., biomass after lipid extraction. Bioresource Technology, v. 257, p. 17-22, 2018. https://doi.org/10.1016/j.biortech.2018.02.079

BHATIA, V. et al. Enhanced photocatalytic degradation of atenolol using graphene TiO2 composite. Journal of Photochemistry and Photobiology A: Chemistry, v. 332, p. 182-187, 2017. https://doi.org/10.1016/j.jphotochem.2016.08.029

BHATNAGAR, A. et al. Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Applied Energy, v. 88, n. 10, p. 3425-3431, 2011. https://doi.org/10.1016/j.apenergy.2010.12.064

CAUDLE, M. R. et al. A molecular study of the wastewater contaminants atenolol and atrazine in 1-n-butyl-3-methylimidazolium based ionic liquids for potential treatment applications. Molecular Physics, v. 115, n. 9-12, p. 1264-1273, 2017. 10.1080/00268976.2016.1278478

CHABUKDHARA, M. et al. Potential and Feasibility of the Microalgal System in Removal of Pharmaceutical Compounds from Wastewater. In: GUPTA, S. K. e BUX, F. (Ed.). Application of Microalgae in Wastewater Treatment: Volume 1: Domestic and Industrial Wastewater Treatment. Cham: Springer International Publishing, 2019. p. 177-206.

COLPANI, G. L. et al. Propranolol hydrochloride degradation using La@TiO2 functionalized with CMCD. Journal of Rare Earths, v. 40, n. 4, p. 579-585, 2022. https://doi.org/10.1016/j.jre.2021.03.002

DENG, Y. et al. Non-radical activation of persulfate with Bi2O3/BiO1.3I0.4 for efficient degradation of propranolol under visible light. Journal of Environmental Sciences, v. 142, p. 57-68, 2024. https://doi.org/10.1016/j.jes.2023.05.021

GENTILI, F. G.; FICK, J. Algal cultivation in urban wastewater: an efficient way to reduce pharmaceutical pollutants. Journal of Applied Phycology, v. 29, n. 1, p. 255-262, 2017. 10.1007/s10811-016-0950-0

GONG, C. et al. Insights into degradation of pharmaceutical pollutant atenolol via electrochemical advanced oxidation processes with modified Ti4O7 electrode: Efficiency, stability and mechanism. Environmental Research, v. 228, p. 115920, 2023. https://doi.org/10.1016/j.envres.2023.115920

GUPTA, S. et al. Bioremediation of synthetic high-chemical oxygen demand wastewater using microalgal species Chlorella pyrenoidosa. BIOREMEDIATION JOURNAL, v. 21, n. 1, p. 38-51, 2017. 10.1080/10889868.2017.1282936

HAMED, S. M. et al. Evaluation of the phycoremediation potential of microalgae for captan removal: Comprehensive analysis on toxicity, detoxification and antioxidants modulation. Journal of Hazardous Materials, v. 427, p. 128177, 2022. https://doi.org/10.1016/j.jhazmat.2021.128177

KALRA, R. et al. Microalgae bioremediation: A perspective towards wastewater treatment along with industrial carotenoids production. Journal of Water Process Engineering, v. 40, p. 101794, 2021. https://doi.org/10.1016/j.jwpe.2020.101794

KOVÁCS, K. et al. Evaluation of advanced oxidation processes for β-blockers degradation: a review. Water Science and Technology, v. 85, n. 2, p. 685-705, 2021. 10.2166/wst.2021.631

KRZEK, J. et al. Stability of Atenolol, Acebutolol and Propranolol in Acidic Environment Depending on its Diversified Polarity. Pharmaceutical Development and Technology, v. 11, n. 4, p. 409-416, 2006. 10.1080/10837450600770106

KUMAR, P. K. et al. Phycoremediation of sewage wastewater and industrial flue gases for biomass generation from microalgae. South African Journal of Chemical Engineering, v. 25, p. 133-146, 2018. https://doi.org/10.1016/j.sajce.2018.04.006

KURADE, M. B. et al. Integrated phycoremediation and ultrasonic-irradiation treatment (iPUT) for the enhanced removal of pharmaceutical contaminants in wastewater. Chemical Engineering Journal, v. 455, p. 140884, 2023. https://doi.org/10.1016/j.cej.2022.140884

KWIECIEŃ, A. et al. Stability of Chosen Beta-Adrenolytic Drugs of Different Polarity in Basic Environment. Journal of AOAC INTERNATIONAL, v. 91, n. 2, p. 322-331, 2008. 10.1093/jaoac/91.2.322

LEONG, Y. K. et al. Pollution prevention and waste phycoremediation by algal-based wastewater treatment technologies: The applications of high-rate algal ponds (HRAPs) and algal turf scrubber (ATS). Journal of Environmental Management, v. 296, p. 113193, 2021. https://doi.org/10.1016/j.jenvman.2021.113193

MUBASHAR, M. et al. Carbon-negative and high-rate nutrient recovery from municipal wastewater using mixotrophic Scenedesmus acuminatus. Journal of Environmental Management, v. 354, p. 120360, 2024. https://doi.org/10.1016/j.jenvman.2024.120360

MUSTAFA, S. et al. Microalgae biosorption, bioaccumulation and biodegradation efficiency for the remediation of wastewater and carbon dioxide mitigation: Prospects, challenges and opportunities. Journal of Water Process Engineering, v. 41, p. 102009, 2021. 10.1016/j.jwpe.2021.102009

OGBONNA, K. E. et al. Effect of organic carbon sources on growth, lipid production and fatty acid profile in mixotrophic culture of Scenedesmus dimorphus (Turpin) Kützing. The Microbe, v. 3, p. 100064, 2024. https://doi.org/10.1016/j.microb.2024.100064

PEREIRA, A. et al. Pharmaceuticals Removal from Wastewater with Microalgae: A Pilot Study. Applied sciences, v. 13, n. 11, p. 6414, 2023. 10.3390/app13116414

PHAN, H. T. B. et al. Visible light-induced degradation of propranolol with peroxymonosulfate as an oxidant and a radical precursor. Separation and Purification Technology, v. 289, p. 120764, 2022. https://doi.org/10.1016/j.seppur.2022.120764

ROCCARO, P. Treatment processes for municipal wastewater reclamation: The challenges of emerging contaminants and direct potable reuse. Current Opinion in Environmental Science & Health, v. 2, p. 46-54, 2018. https://doi.org/10.1016/j.coesh.2018.02.003

SÁNCHEZ-SANDOVAL, D. S. et al. Diclofenac removal by the microalgae species Chlorella vulgaris, Nannochloropsis oculata, Scenedesmus acutus, and Scenedesmus obliquus. 3 Biotech, v. 12, n. 9, p. 210, 2022. 10.1007/s13205-022-03268-2

SINGH, D. V. et al. Microalgae in aquatic environs: A sustainable approach for remediation of heavy metals and emerging contaminants. Environmental Technology & Innovation, v. 21, p. 101340, 2021. https://doi.org/10.1016/j.eti.2020.101340

SISMAN-AYDIN, G.; SIMSEK, K. Investigation of the Phycoremediation Potential of Freshwater Green Algae IGolenkinia radiata/I for Municipal Wastewater. Sustainability (Basel, Switzerland), v. 14, n. 23, 2022. 10.3390/su142315705

SUBASHCHANDRABOSE, S. R. et al. Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environment International, v. 51, p. 59-72, 2013. https://doi.org/10.1016/j.envint.2012.10.007

SUTHERLAND, D. L.; RALPH, P. J. Microalgal bioremediation of emerging contaminants - Opportunities and challenges. Water Research, v. 164, p. 114921, 2019. https://doi.org/10.1016/j.watres.2019.114921

XIONG, J.-Q. et al. Can Microalgae Remove Pharmaceutical Contaminants from Water? Trends in Biotechnology, v. 36, n. 1, p. 30-44, 2018. https://doi.org/10.1016/j.tibtech.2017.09.003

Downloads

Publicado

2024-12-30

Como Citar

Rathke, C. R., de Oliveira, F. R., Louzada Leal Butzke, V., Medianeira Rizzetti, T., Zanella, R., Machado, Ênio L., & de Cassia de Souza Schneider, R. (2024). AVALIAÇÃO DO POTENCIAL DE FICORREMEDIAÇÃO DE FÁRMACOS BETA-BLOQUEADORES ATRAVÉS DA MICROALGA SCENEDESMUS SUBSPICATUS. Revista Jovens Pesquisadores, 14(2), 3-13. https://doi.org/10.17058/rjp.v14i2.19364

Edição

Seção

CIÊNCIAS EXATAS, DA TERRA E ENGENHARIAS